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This paper gives a review of integration algorithms for finite dimensional
mechanical systems that are based on discrete variational principles. The
variational technique gives a unified treatment of many symplectic schemes,
including those of higher order, as well as a natural treatment of the discrete
Noether theorem. The approach also allows us to include forces, dissipation
and constraints in a natural way. Amongst the many specific schemes treated
as examples, the Verlet, SHAKE, RATTLE, Newmark, and the symplectic
partitioned Runge–Kutta schemes are presented.
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PART ONE

Discrete variational mechanics

1.1. Introduction

This paper gives a survey of the variational approach to discrete mechanics
and to mechanical integrators. This point of view is not confined to con-
servative systems, but also applies to forced and dissipative systems, so is
useful for control problems (for instance) as well as traditional conservative
problems in mechanics. As we shall show, the variational approach gives a
comprehensive and unified view of much of the literature on both discrete
mechanics as well as integration methods for mechanical systems and we
view these as closely allied subjects.

Some of the important topics that come out naturally from this method
are symplectic–energy-momentum methods, error analysis, constraints, for-
cing, and Newmark algorithms. Besides giving an account of methods such
as these, we connect these techniques to other recent and exciting develop-
ments, including the PDE setting of multisymplectic spacetime integrators
(also called AVI, or asynchronous variational integrators), which are be-
ing used for problems such as nonlinear wave equations and nonlinear shell
dynamics. In fact, one of our points is that by basing the integrators on fun-
damental mechanical concepts and methods from the outset, one eases the
way to other areas, such as continuum mechanics and systems with forcing
and constraints.

In the last few years this subject has grown to be very large and an active
area of research, with many points of view and many topics. We shall focus
here on our own point of view, namely the variational view. Naturally we
must omit a number of important topics, but include several of our own.
We do make contact with some, but not all, of other topics in the final part
of this article and in the brief history below.

As in standard mechanics, some things are easier from a Hamiltonian
perspective and others are easier from a Lagrangian perspective. Regarding
symplectic integrators from both viewpoints gives greater insight into their
properties and derivations. We have tried to give a balanced perspective in
this article.

We will assume that the configuration manifold is finite-dimensional. This
means that at the outset, we will deal with the context of ordinary differ-
ential equations. However, as we have indicated, our approach is closely
tied with the variational spacetime multisymplectic approach, which is the
approach that is suitable for the infinite-dimensional, PDE context, so an
investment in the methodology of this article eases the transition to the
corresponding PDE context.
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One of the simple, but important ideas in discrete mechanics is easiest
to say from the Lagrangian point of view. Namely, consider a mechanical
system with configuration manifold Q. The velocity phase space is then
TQ and the Lagrangian is a map L : TQ → R. In discrete mechanics, the
starting point is to replace TQ with Q × Q and we regard, intuitively, two
nearby points as being the discrete analogue of a velocity vector.

There is an important note about constraints that we would like to say at
the outset. Recall from basic geometric mechanics (as in Marsden and Ratiu
(1999) for instance) that specifying a constraint manifold Q means that one
may already have specified constraints: for example, Q may already be a
submanifold of a linear space that is specified by constraints. However, when
constructing integrators in Section 2.1 we will take Q to be linear, although
this is only for simplicity. One way of handling a nonlinear Q is to embed it
within a linear space and use the theory of constrained systems: this point
of view is developed in Section 3. This approach has computational advant-
ages, but we will also discuss implementations of variational integrators on
arbitrary configuration manifolds Q.

1.1.1. History and literature

Of course, the variational view of mechanics goes back to Euler, Lagrange
and Hamilton. The form of the variational principle most important for con-
tinuous mechanics we use in this article is due, of course, to Hamilton (1834).
We refer to Marsden and Ratiu (1999) for additional history, references and
background on geometric mechanics.

There have been many attempts at the development of a discrete mech-
anics and corresponding integrators that we will not attempt to survey in
any systematic fashion. The theory of discrete variational mechanics in the
form we shall use it (that uses Q×Q for the discrete analogue of the velo-
city phase space) has its roots in the optimal control literature of the 1960s:
see, for example, Jordan and Polak (1964), Hwang and Fan (1967) and
Cadzow (1970). In the context of mechanics early work was done, often in-
dependently, by Cadzow (1973), Logan (1973), Maeda (1980, 1981a, 1981b),
and Lee (1983, 1987), by which point the discrete action sum, the discrete
Euler–Lagrange equations and the discrete Noether’s theorem were clearly
understood. This theory was then pursued further in the context of integ-
rable systems in Veselov (1988, 1991) and Moser and Veselov (1991), and
in the context of quantum mechanics in Jaroszkiewicz and Norton (1997a,
1997b) and Norton and Jaroszkiewicz (1998).

The variational view of discrete mechanics and its numerical implement-
ation is further developed in Wendlandt and Marsden (1997a) and (1997b)
and then extended in Kane, Marsden and Ortiz (1999a), Marsden, Pekarsky
and Shkoller (1999a, 1999b), Bobenko and Suris (1999a, 1999b) and Kane,
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Marsden, Ortiz and West (2000). The beginnings of an extension of these
ideas to a nonsmooth framework is given in Kane, Repetto, Ortiz and
Marsden (1999b), and is carried further in Fetecau, Marsden, Ortiz and
West (2001).

Other discretizations of Hamilton’s principle are given in Mutze (1998),
Cano and Lewis (1998) and Shibberu (1994). Other versions of discrete
mechanics (not necessarily discrete Hamilton’s principles) are given in (for
instance) Itoh and Abe (1988), Labudde and Greenspan (1974, 1976a, 1976b),
and MacKay (1992).

Of course, there have been many works on symplectic integration, largely
done from other points of view than that developed here. We will not at-
tempt to survey this in any systematic fashion, as the literature is simply
too large with too many points of view and too many intricate subtleties.
We give a few highlights and give further references in the body of the pa-
per. For instance, we shall connect the variational view with the generating
function point of view that was begun in De Vogelaére (1956). Generating
function methods were developed and used in, for example, Ruth (1983),
Forest and Ruth (1990) and in Channell and Scovel (1990). See also Berg,
Warnock, Ruth and Forest (1994), and Warnock and Ruth (1991, 1992).
For an overview of symplectic integration, see Sanz-Serna (1992b) and Sanz-
Serna and Calvo (1994). Qualitative properties of symplectic integration
of Hamiltonian systems are given in Gonzalez, Higham and Stuart (1999)
and Cano and Sanz-Serna (1997). Long-time energy behaviour for oscillat-
ory systems is studied in Hairer and Lubich (2000). Long-time behaviour
of symplectic methods for systems with dissipation is given in Hairer and
Lubich (1999). A numerical study of preservation of adiabatic invariants is
given in Reich (1999b) and Shimada and Yoshida (1996). Backward error
analysis is studied in Benettin and Giorgilli (1994), Hairer (1994), Hairer
and Lubich (1997) and Reich (1999a). Other ideas connected to the above
literature include those of Baez and Gilliam (1994), Gilliam (1996), Gillilan
and Wilson (1992). For other references see the large literature on symplectic
methods in molecular dynamics, such as Schlick, Skeel et al. (1999), and for
various applications, see Hardy, Okunbor and Skeel (1999), Leimkuhler and
Skeel (1994), Barth and Leimkuhler (1996) and references therein.

A single-step variational idea that is relevant for our approach is given in
Ortiz and Stainier (1998), and developed further in Radovitzky and Ortiz
(1999), and Kane et al. (1999b, 2000).

Direct discretizations on the Hamiltonian side, where one discretizes the
Hamiltonian and the symplectic structure, are developed in Gonzalez (1996b)
and (1996a) and further in Gonzalez (1999) and Gonzalez et al. (1999). This
is developed and generalized much further in McLachlan, Quispel and Ro-
bidoux (1998) and (1999).
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Finally, we mention that techniques of geometric integration in the sense
of preserving manifold or Lie group structures, as given in Budd and Iserles
(1999), Iserles, Munthe-Kaas and Zanna (2000) and references therein, pre-
sumably could, and probably should, be combined with the techniques de-
scribed herein for a more efficient treatment of certain classes of constraints
in mechanical systems. Such an enterprise is for the future.

1.1.2. A simplified introduction

In this section we give a brief overview of how discrete variational mechanics
can be used to derive variational integrators. We begin by reviewing the
derivation of the Euler–Lagrange equations, and then show how to mimic
this process on a discrete level.

For concreteness, consider the Lagrangian system L(q, q̇) = 1
2 q̇

TMq̇ −
V (q), where M is a symmetric positive-definite mass matrix and V is a po-
tential function. We work in R

n or in generalized coordinates and will use
vector notation for simplicity, so q = (q1, q2, . . . , qn). In the standard ap-
proach of Lagrangian mechanics, we form the action function by integrating
L along a curve q(t) and then compute variations of the action while holding
the endpoints of the curve q(t) fixed. This gives

δ

∫ T

0
L
(

q(t), q̇(t)
)

dt =

∫ T

0

[

∂L

∂q
· δq +

∂L

∂q̇
· δq̇

]

dt

=

∫ T

0

[

∂L

∂q
−

d

dt

(

∂L

∂q̇

)]

· δq dt,

where we have used integration by parts and the condition δq(T ) = δq(0) =
0. Requiring that the variations of the action be zero for all δq implies that
the integrand must be zero for each time t, giving the well-known Euler–
Lagrange equations

∂L

∂q
(q, q̇) −

d

dt

(

∂L

∂q̇
(q, q̇)

)

= 0.

For the particular form of the Lagrangian chosen above, this is just

Mq̈ = −∇V (q),

which is Newton’s equation: mass times acceleration equals force. It is
well known that the system described by the Euler–Lagrange equations has
many special properties. In particular, the flow on state space is symplectic,
meaning that it conserves a particular two-form, and if there are symmetry
actions on phase space then there are corresponding conserved quantities of
the flow, known as momentum maps.

We will now see how discrete variational mechanics performs an analogue
of the above derivation. Rather than taking a position q and velocity q̇,
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consider now two positions q0 and q1 and a time-step h ∈ R. These positions
should be thought of as being two points on a curve at time h apart, so that
q0 ≈ q(0) and q1 ≈ q(h).

We now consider a discrete Lagrangian Ld(q0, q1, h), which we think of as
approximating the action integral along the curve segment between q0 and
q1. For concreteness, consider the very simple approximation to the integral
∫ T
0 Ldt given by using the rectangle rule1 (the length of the interval times

the value of the integrand with the velocity vector replaced by (q1 − q0)/h):

Ld(q0, q1, h) = h

[(

q1 − q0
h

)T

M

(

q1 − q0
h

)

− V (q0)

]

.

Next consider a discrete curve of points {qk}
N
k=0 and calculate the discrete

action along this sequence by summing the discrete Lagrangian on each adja-
cent pair. Following the continuous derivation above, we compute variations
of this action sum with the boundary points q0 and qN held fixed. This gives

δ

N−1
∑

k=0

Ld(qk, qk+1, h)

=

N−1
∑

k=0

[

D1Ld(qk, qk+1, h) · δqk + D2Ld(qk, qk+1, h) · δqk+1

]

=

N−1
∑

k=1

[

D2Ld(qk−1, qk, h) + D1Ld(qk, qk+1, h)
]

· δqk,

where we have used a discrete integration by parts (rearranging the summa-
tion) and the fact that δq0 = δqN = 0. If we now require that the variations
of the action be zero for any choice of δqk, then we obtain the discrete
Euler–Lagrange equations

D2Ld(qk−1, qk, h) + D1Ld(qk, qk+1, h) = 0,

which must hold for each k. For the particular Ld chosen above, we compute

D2Ld(qk−1, qk, h) = M

(

qk − qk−1

h

)

D1Ld(qk, qk+1, h) = −

[

M

(

qk+1 − qk
h

)

+ h∇V (qk)

]

,

and so the discrete Euler–Lagrange equations are

M

(

qk+1 − 2qk + qk−1

h2

)

= −∇V (qk).

1 As we shall see later, more sophisticated quadrature rules lead to higher-order accurate
integrators.
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Fig. 1. Energy computed with variational Newmark
(solid line) and Runge–Kutta (dashed line). Note that
the variational method does not artificially dissipate
energy

This is clearly a discretization of Newton’s equations, using a simple finite
difference rule for the derivative.

If we take initial conditions (q0, q1) then the discrete Euler–Lagrange equa-
tions define a recursive rule for calculating the sequence {qk}

N
k=0. Regarded

in this way, they define a map FLd
: (qk, qk+1) �→ (qk+1, qk+2) which we can

think of as a one-step integrator for the system defined by the continuous
Euler–Lagrange equations.

Indeed, as we will see later, many standard one-step methods can be
derived by such a procedure. An example of this is the well-known Newmark
method, which for the parameter settings γ = 1

2 and β = 0 is derived by
choosing the discrete Lagrangian

Ld(q0, q1, h) = h

[(

q1 − q0
h

)T

M

(

q1 − q0
h

)

−

(

V (q0) + V (q1)

2

)]

.

If we use this variational Newmark method to simulate a model system and
plot the energy versus time, then we obtain a graph like that in Figure 1.
For comparison, this graph also shows the energy curve for a simulation with
a standard stable method such as RK4 (the common fourth-order Runge–
Kutta method).

The system being simulated here is purely conservative and so there should
be no loss of energy over time. The striking aspect of this graph is that
while the energy associated with a standard method decays due to numerical
damping, for the Newmark method the energy error remains bounded. This
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may be understood by recognizing that the integrator is symplectic, that is,
it preserves the same two-form on state space as the true system.

In fact, all variational integrators have this property, as it is a consequence
of the variational method of derivation, just as it is for continuous Lagran-
gian systems. In addition, they will also have the property of conserving
momentum maps arising from symmetry actions, again due to the vari-
ational derivation. To understand this behaviour more deeply, however, we
must first return to the beginning and consider in more detail the geometric
structures underlying both continuous and discrete variational mechanics.

Of course, such sweeping statements as above have to be interpreted and
used with great care, as in the precise statements in the text that follows.
For example, if the integration step size is too large, then sometimes energy
can behave very badly, even for a symplectic integrator (see, for example,
Gonzalez and Simo (1996)). It is likewise well known that energy conserva-
tion does not guarantee accuracy (Ortiz 1986).

1.2. Background: Lagrangian mechanics

1.2.1. Basic definitions

Consider a configuration manifold Q, with associated state space given by
the tangent bundle TQ, and a Lagrangian L : TQ → R.

Given an interval [0, T ], define the path space to be

C(Q) = C([0, T ], Q) = {q : [0, T ] → Q | q is a C2 curve}

and the action map G : C(Q) → R to be

G(q) ≡

∫ T

0
L(q(t), q̇(t)) dt. (1.2.1)

It can be proved that C(Q) is a smooth manifold (Abraham, Marsden and
Ratiu 1988), and G is as smooth as L.

The tangent space TqC(Q) to C(Q) at the point q is the set of C2 maps
vq : [0, T ] → TQ such that πQ ◦ vq = q, where πQ : TQ → Q is the canonical
projection.

Define the second-order submanifold of T (TQ) to be

Q̈ ≡ {w ∈ T (TQ) | TπQ(w) = πTQ(w)} ⊂ T (TQ)

where πTQ : T (TQ) → TQ and πQ : TQ → Q are the canonical projections.

Q̈ is simply the set of second derivatives d2q/ dt2(0) of curves q : R → Q,
which are elements of the form ((q, q̇), (q̇, q̈)) ∈ T (TQ).

Theorem 1.2.1. Given a Ck Lagrangian L, k ≥ 2, there exists a unique
Ck−2 mapping DELL : Q̈ → T ∗Q and a unique Ck−1 one-form ΘL on TQ,
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such that, for all variations δq ∈ TqC(Q) of q(t), we have

dG(q) · δq =

∫ T

0
DELL(q̈) · δq dt + ΘL(q̇) · δ̂q

∣

∣

∣

T

0
, (1.2.2)

where

δ̂q(t) =

((

q(t),
∂q

∂t
(t)

)

,

(

δq(t),
∂δq

∂t
(t)

))

.

The mapping DELL is called the Euler–Lagrange map and has the coordinate
expression

(DELL)i =
∂L

∂qi
−

d

dt

∂L

∂q̇i
.

The one-form ΘL is called the Lagrangian one-form and in coordinates is
given by

ΘL =
∂L

∂q̇i
dqi. (1.2.3)

Proof. Computing the variation of the action map gives

dG(q) · δq =

∫ T

0

[

∂L

∂qi
δqi +

∂L

∂q̇i
d

dt
δqi

]

dt

=

∫ T

0

[

∂L

∂qi
−

d

dt

∂L

∂q̇i

]

· δqi dt +

[

∂L

∂q̇i
δqi

]T

0

using integration by parts, and the terms of this expression can be identified
as the Euler–Lagrange map and the Lagrangian one-form. �

1.2.2. Lagrangian vector fields and flows

The Lagrangian vector field XL : TQ → T (TQ) is a second-order vector
field on TQ satisfying

DELL ◦XL = 0 (1.2.4)

and the Lagrangian flow FL : TQ × R → TQ is the flow of XL (we shall
ignore issues related to global versus local flows, which are easily dealt with
by restricting the domains of the flows). We shall write F t

L : TQ → TQ for
the map FL at the frozen time t.

For an arbitrary Lagrangian, equation (1.2.4) may not uniquely define
the vector field XL and hence the flow map FL may not exist. For now we
will assume that L is such that these objects exist and are unique, and in
Section 1.4.3 we will see under what conditions this is true.

A curve q ∈ C(Q) is said to be a solution of the Euler–Lagrange equations
if the first term on the right-hand side of (1.2.2) vanishes for all variations
δq ∈ TqC(Q). This is equivalent to (q, q̇) being an integral curve of XL, and
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means that q must satisfy the Euler–Lagrange equations

∂L

∂qi
(q, q̇) −

d

dt

(

∂L

∂q̇i
(q, q̇)

)

= 0 (1.2.5)

for all t ∈ (0, T ).

1.2.3. Lagrangian flows are symplectic

Define the solution space CL(Q) ⊂ C(Q) to be the set of solutions of the
Euler–Lagrange equations. As an element q ∈ CL(Q) is an integral curve of
XL, it is uniquely determined by the initial condition (q(0), q̇(0)) ∈ TQ and
we can thus identify CL(Q) with the space of initial conditions TQ.

Defining the restricted action map Ĝ : TQ → R to be

Ĝ(vq) = G(q), q ∈ CL(Q) and (q(0), q̇(0)) = vq,

we see that (1.2.2) reduces to

dĜ(vq) · wvq = ΘL(q̇(T ))((F T
L )∗(wvq)) − ΘL(vq)(wvq)

= ((F T
L )∗(ΘL))(vq)(wvq) − ΘL(vq)(wvq) (1.2.6)

for all wvq ∈ Tvq(TQ). Taking a further derivative of this expression, and

using the fact that d2Ĝ = 0, we obtain

(F T
L )∗(ΩL) = ΩL,

where ΩL = dΘL is the Lagrangian symplectic form, given in coordinates
by

ΩL(q, q̇) =
∂2L

∂qi∂q̇j
dqi ∧ dqj +

∂2L

∂q̇i∂q̇j
dq̇i ∧ dqj .

1.2.4. Lagrangian flows preserve momentum maps

Suppose that a Lie group G, with Lie algebra g, acts on Q by the (left or
right) action Φ : G × Q → Q. Consider the tangent lift of this action to

ΦTQ : G× TQ → TQ given by ΦTQ
g (vq) = T (Φg) · vq, which is

ΦTQ
(

g, (q, q̇)
)

=

(

Φi(g, q),
∂Φi

∂qj
(g, q) q̇j

)

.

For ξ ∈ g define the infinitesimal generators ξQ : Q → TQ and ξTQ : TQ →
T (TQ) by

ξQ(q) =
d

dg

(

Φg(q)
)

· ξ,

ξTQ(vq) =
d

dg

(

ΦTQ
g (vq)

)

· ξ.
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In coordinates these are given by

ξQ(q) =

(

qi,
∂Φi

∂gm
(e, q)ξm

)

,

ξTQ(q, q̇) =

(

qi, q̇i,
∂Φi

∂gm
(e, q)ξm,

∂2Φi

∂gm∂qj
(e, q)q̇jξm

)

.

We now define the Lagrangian momentum map JL : TQ → g∗ to be

JL(vq) · ξ = ΘL · ξTQ(vq). (1.2.7)

It can be checked that an equivalent expression for JL is

JL(vq) · ξ =

〈

∂L

∂q̇
, ξQ(q)

〉

,

where ∂L/∂q̇ represents the Legendre transformation, discussed shortly.
This equation is convenient for computing momentum maps in examples:
see Marsden and Ratiu (1999).

The traditional linear and angular momenta are momentum maps, with
the linear momentum JL : TR

n → R
n arising from the additive action of R

n

on itself, and the angular momentum JL : TR
n → so(n)∗ coming from the

action of SO(n) on R
n.

An important property of momentum maps is equivariance, which is the
condition that the following diagram commutes.

TQ
JL ��

ΦTQ
g

��

g∗

Ad∗

g−1

��
TQ

JL
�� g∗

(1.2.8)

In general, Lagrangian momentum maps are not equivariant, but we give
here a simple sufficient condition for this property to be satisfied. Recall that
a map f : TQ → TQ is said to be symplectic if f∗ΩL = ΩL. If, furthermore,
f is such that f∗ΘL = ΘL, then f is said to be a special symplectic map.
Clearly a special symplectic map is also symplectic, but the converse does
not hold.

Theorem 1.2.2. Consider a Lagrangian system L : TQ → R with a left
action Φ : G × Q → Q. If the lifted action ΦTQ : G × TQ → TQ acts
by special canonical transformations, then the Lagrangian momentum map
JL : TQ → g∗ is equivariant.

Proof. Observing that (ΦTQ
g )−1 = ΦTQ

g−1 , we see that equivariance is equi-

valent to

JL(vq) · ξ = JL ◦ TΦg−1(vq) · Adg−1ξ.
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We now compute the right-hand side of this expression to give

JL ◦ ΦTQ
g−1(vq) · Adg−1ξ =

〈

ΘL

(

ΦTQ
g−1(vq)

)

, (Adg−1ξ)TQ

(

ΦTQ
g−1(vq)

)〉

=
〈

ΘL

(

ΦTQ
g−1(vq)

)

, T (ΦTQ
g−1) · ξTQ(vq)

〉

=
〈(

(ΦTQ
g−1)

∗ΘL

)

(vq), ξTQ(vq)
〉

=
〈

ΘL(vq), ξTQ(vq)
〉

,

which is just JL(vq) · ξ, as desired. Here we used the identity (Adgξ)M =
Φ∗
g−1ξM (Marsden and Ratiu 1999) to pass from the first to the second line.

�

A Lagrangian L : TQ → R is said to be invariant under the lift of the
action Φ : G × Q → Q if L ◦ ΦTQ

g = L for all g ∈ G, and in this case the
group action is said to be a symmetry of the Lagrangian. Differentiating this
expression implies that the Lagrangian is infinitesimally invariant , which is
the statement dL · ξTQ = 0 for all ξ ∈ g.

Observe that if L is invariant then this implies that ΦTQ acts by spe-
cial symplectic transformations, and so the Lagrangian momentum map is
equivariant. To see this, we write L ◦ ΦTQ

g = L in coordinates to obtain
L(Φg(q), ∂qΦg(q) · q̇) = L(q, q̇), and now differentiating this with respect to
q̇ in the direction δq gives

∂L

∂q̇

(

Φg(q), ∂qΦg(q) · q̇
)

· ∂qΦg(q) · δq =
∂L

∂q̇
(q, q̇) · δq.

But the left- and right-hand sides are simply (ΦTQ
g )∗ΘL and ΘL, respectively,

evaluated on ((q, q̇), (δq, δq̇)), and thus we have (ΦTQ
g )∗ΘL = ΘL.

We will now show that, when the group action is a symmetry of the
Lagrangian, then the momentum maps are preserved by the Lagrangian
flow. This result was originally due to Noether (1918), using a technique
similar to the one given below.

Theorem 1.2.3. (Noether’s theorem) Consider a Lagrangian system
L : TQ → R which is invariant under the lift of the (left or right) action
Φ : G × Q → Q. Then the corresponding Lagrangian momentum map
JL : TQ → g∗ is a conserved quantity of the flow, so that JL ◦ F t

L = JL for
all times t.

Proof. The action of G on Q induces an action of G on the space of paths
C(Q) by pointwise action, so that Φg : C(Q) → C(Q) is given by Φg(q)(t) =
Φg(q(t)). As the action is just the integral of the Lagrangian, invariance of
L implies invariance of G and the differential of this gives

dG(q) · ξC(Q)(q) =

∫ T

0
dL · ξTQ dt = 0.
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Invariance of G also implies that Φg maps solution curves to solution curves
and thus ξC(Q)(q) ∈ TqCL, which is the corresponding infinitesimal version.
We can thus restrict dG · ξC(Q) to the space of solutions CL to obtain

0 = Ĝ(vq) · ξTQ(vq) = ΘL(q̇(T )) · ξTQ(q̇(T )) − ΘL(vq) · ξTQ(vq).

Substituting in the definition of the Lagrangian momentum map JL, how-
ever, shows that this is just 0 = JL(F T

L (vq)) · ξ − JL(vq) · ξ, which gives the
desired result. �

We have thus seen that conservation of momentum maps is a direct con-
sequence of the invariance of the variational principle under a symmetry
action. The fact that the symmetry maps solution curves to solution curves
will extend directly to discrete mechanics.

In fact, only infinitesimal invariance is needed for the momentum map
to be conserved by the Lagrangian flow, as a careful reading of the above
proof will show. This is because it is only necessary that the Lagrangian
be invariant in a neighbourhood of a given trajectory, and so the global
statement of invariance is stronger than necessary.

1.3. Discrete variational mechanics: Lagrangian viewpoint

Take again a configuration manifold Q, but now define the discrete state
space to be Q × Q. This contains the same amount of information as (is
locally isomorphic to) TQ. A discrete Lagrangian is a function Ld : Q ×
Q → R.

To relate discrete and continuous mechanics it is necessary to introduce
a time-step h ∈ R, and to take Ld to depend on this time-step. For the
moment, we will take Ld : Q×Q×R → R, and will neglect the h dependence
except where it is important. We shall come back to this point later when we
discuss the context of time-dependent mechanics and adaptive algorithms.
However, the idea behind this was explained in the introduction.

Construct the increasing sequence of times {tk = kh | k = 0, . . . , N} ⊂ R

from the time-step h, and define the discrete path space to be

Cd(Q) = Cd({tk}
N
k=0, Q) = {qd : {tk}

N
k=0 → Q}.

We will identify a discrete trajectory qd ∈ Cd(Q) with its image qd = {qk}
N
k=0,

where qk = qd(tk). The discrete action map Gd : Cd(Q) → R is defined by

Gd(qd) =

N−1
∑

k=0

Ld(qk, qk+1).

As the discrete path space Cd is isomorphic to Q× · · ·×Q (N +1 copies), it
can be given a smooth product manifold structure. The discrete action Gd

clearly inherits the smoothness of the discrete Lagrangian Ld.
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The tangent space TqdCd(Q) to Cd(Q) at qd is the set of maps vqd :
{tk}

N
k=0 → TQ such that πQ ◦ vqd = qd, which we will denote by vqd =

{(qk, vk)}
N
k=0.

The discrete object corresponding to T (TQ) is the set (Q×Q)× (Q×Q).
We define the projection operator π and the translation operator σ to be

π : ((q0, q1), (q
′
0, q

′
1)) �→ (q0, q1),

σ : ((q0, q1), (q
′
0, q

′
1)) �→ (q′0, q

′
1).

The discrete second-order submanifold of (Q×Q)× (Q×Q) is defined to be

Q̈d ≡ {wd ∈ (Q×Q) × (Q×Q) | π1 ◦ σ(wd) = π2 ◦ π(wd)},

which has the same information content as (is locally isomorphic to) Q̈.
Concretely, the discrete second-order submanifold is the set of pairs of the
form ((q0, q1), (q1, q2)).

Theorem 1.3.1. Given a Ck discrete Lagrangian Ld, k ≥ 1, there exists
a unique Ck−1 mapping DDELLd : Q̈d → T ∗Q and unique Ck−1 one-forms
Θ+

Ld
and Θ−

Ld
on Q×Q, such that, for all variations δqd ∈ TqdC(Q) of qd, we

have

dGd(qd) · δqd =

N−1
∑

k=1

DDELLd((qk−1, qk), (qk, qk+1)) · δqk

+ Θ+
Ld

(qN−1, qN ) · (δqN−1, δqN ) − Θ−
Ld

(q0, q1) · (δq0, δq1). (1.3.1)

The mapping DDELLd is called the discrete Euler–Lagrange map and has
coordinate expression

DDELLd((qk−1, qk), (qk, qk+1)) = D2Ld(qk−1, qk) + D1Ld(qk, qk+1).

The one-forms Θ+
Ld

and Θ−
Ld

are called the discrete Lagrangian one-forms
and in coordinates are

Θ+
Ld

(q0, q1) = D2Ld(q0, q1)dq1 =
∂Ld

∂qi1
dqi1, (1.3.2a)

Θ−
Ld

(q0, q1) = −D1Ld(q0, q1)dq0 = −
∂Ld

∂qi0
dqi0. (1.3.2b)

Proof. Computing the derivative of the discrete action map gives

dGd(qd) · δqd =
N−1
∑

k=0

[D1Ld(qk, qk+1) · δqk + D2Ld(qk, qk+1) · δqk+1]

=

N−1
∑

k=1

[D1Ld(qk, qk+1) + D2Ld(qk−1, qk)] · δqk

+ D1Ld(q0, q1) · δq0 + D2Ld(qN−1, qN ) · δqN
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using a discrete integration by parts (rearrangement of the summation).
Identifying the terms with the discrete Euler–Lagrange map and the discrete
Lagrangian one-forms now gives the desired result. �

Unlike the continuous case, in the discrete case there are two one-forms
that arise from the boundary terms. Observe, however, that dLd = Θ+

Ld
−

Θ−
Ld

and so using d2 = 0 shows that

dΘ+
Ld

= dΘ−
Ld
.

This will be reflected below in the fact that there is only a single discrete
two-form, which is the same as the continuous situation and is important
for symplecticity.

1.3.1. Discrete Lagrangian evolution operator and mappings

A discrete evolution operator X plays the same role as a continuous vector
field, and is defined to be any map X : Q×Q → (Q×Q)×(Q×Q) satisfying
π◦X = id. The discrete object corresponding to the flow is the discrete map
F : Q × Q → Q × Q defined by F = σ ◦X. In coordinates, if the discrete
evolution operator maps X : (q0, q1) �→ (q0, q1, q

′
0, q

′
1), then the discrete map

will be F : (q0, q1) �→ (q′0, q
′
1).

We will be mainly interested in discrete evolution operators which are
second-order , which is the requirement that X(Q ×Q) ⊂ Q̈d. This implies
that they have the form X : (q0, q1) �→ (q0, q1, q1, q2), and so the corres-
ponding discrete map will be F : (q0, q1) �→ (q1, q2). We now consider the
particular case of a discrete Lagrangian system.

The discrete Lagrangian evolution operator XLd
is a second-order discrete

evolution operator satisfying

DDELLd ◦XLd
= 0

and the discrete Lagrangian map FLd
: Q × Q → Q × Q is defined by

FLd
= σ ◦XLd

.
As in the continuous case, the discrete Lagrangian evolution operator and

discrete Lagrangian map are not well-defined for arbitrary choices of discrete
Lagrangian. We will henceforth assume that Ld is chosen so as to make
these structures well-defined, and in Section 1.5 we will give a condition on
Ld which ensures that this is true.

A discrete path qd ∈ Cd(Q) is said to be a solution of the discrete Euler–
Lagrange equations if the first term on the right-hand side of (1.3.1) vanishes
for all variations δqd ∈ TqdCd(Q). This means that the points {qk} satisfy
FLd

(qk−1, qk) = (qk, qk+1) or, equivalently, that they satisfy the discrete
Euler–Lagrange equations

D2Ld(qk−1, qk) + D1Ld(qk, qk+1) = 0, for all k = 1, . . . , N − 1. (1.3.3)
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1.3.2. Discrete Lagrangian maps are symplectic

Define the discrete solution space CLd
(Q) ⊂ Cd(Q) to be the set of solutions

of the discrete Euler–Lagrange equations. Since an element qd ∈ CLd
(Q) is

formed by iteration of the map FLd
, it is uniquely determined by the initial

condition (q0, q1) ∈ Q × Q. We can thus identify CLd
(Q) with the space of

initial conditions Q×Q.
Defining the restricted discrete action map Ĝd : Q×Q → R to be

Ĝd(q0, q1) = Gd(qd); qd ∈ CLd
(Q) and (qd(t0), qd(t1)) = (q0, q1),

we see that (1.3.1) reduces to

dĜd(vd) · wvd = Θ+
Ld

(FN−1
Ld

(vd))((F
N−1
Ld

)∗(wvd)) − Θ−
Ld

(vd)(wvd)

= ((FN−1
Ld

)∗(Θ+
Ld

))(vd)(wvd) − Θ−
Ld

(vd)(wvd) (1.3.4)

for all wvd ∈ Tvd(Q × Q) and vd = (q0, q1) ∈ Q × Q. Taking a further

derivative of this expression, and using the fact that d2Ĝd = 0, we obtain

(FN−1
Ld

)∗(ΩLd
) = ΩLd

where ΩLd
= dΘ+

Ld
= dΘ−

Ld
is the discrete Lagrangian symplectic form, with

coordinate expression

ΩLd
(q0, q1) =

∂2Ld

∂qi0∂q
j
1

dqi0 ∧ dqj1.

This argument also holds if we take any subinterval of 0, . . . , N and so the
statement is true for any number of steps of FLd

. For a single step we have
(FLd

)∗ΩLd
= ΩLd

.
Given a map f : Q×Q → Q×Q, we will say that f is discretely symplectic

if f∗ΩLd
= ΩLd

. The above calculations thus prove that the discrete La-
grangian map FLd

is discretely symplectic, just as we saw in the last section
that the Lagrangian flow map is symplectic on TQ.

1.3.3. Discrete Noether’s theorem

Consider the (left or right) action Φ : G × Q → Q of a Lie group G on Q,
with infinitesimal generator as defined in Section 1.2. This action can be
lifted to Q × Q by the product ΦQ×Q

g (q0, q1) = (Φg(q0),Φg(q1)), which has
an infinitesimal generator ξQ×Q : Q×Q → T (Q×Q) given by

ξQ×Q(q0, q1) = (ξQ(q0), ξQ(q1)).

The two discrete Lagrangian momentum maps J+
Ld
, J−

Ld
: Q×Q → g∗ are

J+
Ld

(q0, q1) · ξ = Θ+
Ld

· ξQ×Q(q0, q1),

J−
Ld

(q0, q1) · ξ = Θ−
Ld

· ξQ×Q(q0, q1).
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Using the expressions for Θ±
Ld

allows the discrete momentum maps to be
alternatively written as

J+
Ld

(q0, q1) · ξ = 〈D2Ld(q0, q1), ξQ(q1)〉 ,

J−
Ld

(q0, q1) · ξ = 〈−D1Ld(q0, q1), ξQ(q0)〉 ,

which are computationally useful formulations.
As in the continuous case, it is interesting to consider when the discrete

momentum maps are equivariant. This is the conditions

J+
Ld

◦ ΦQ×Q
g = Ad∗

g−1 ◦ J
+
Ld
,

J−
Ld

◦ ΦQ×Q
g = Ad∗

g−1 ◦ J
−
Ld
.

In general these equations will not be satisfied; however, there is a simple
sufficient condition, similar to the condition in the continuous case.

Recall that we have defined a map f : Q × Q → Q × Q to be discretely
symplectic if f∗ΩLd

= ΩLd
. We now define f to be a special discrete sym-

plectic map if f∗Θ+
Ld

= Θ+
Ld

and f∗Θ−
Ld

= Θ−
Ld

. This clearly means that f
is also discretely symplectic, but the reverse is not true.

Theorem 1.3.2. Take a discrete Lagrangian system Ld : Q×Q → R with
a (left or right) group action Φ : G × Q → Q. If the product lifted action
ΦQ×Q : G×Q×Q → Q×Q acts by special discrete symplectic maps, then
the discrete Lagrangian momentum maps are equivariant.

Proof. The proof used in Theorem 1.2.2 for the continuous case can also
be used here, with J+

Ld
and J−

Ld
being considered separately. �

If the lifted action only preserves one of Θ+
Ld

or Θ−
Ld

then only the corres-

ponding momentum map will necessarily be equivariant.2

If a discrete Lagrangian Ld : Q × Q → R is such that Ld ◦ ΦQ×Q
g = Ld

for all g ∈ G, then Ld is said to be invariant under the lifted action, and Φ
is said to be a symmetry of the discrete Lagrangian. Note that invariance
implies infinitesimal invariance, which is dLd · ξQ×Q = 0 for all ξ ∈ g. Also
note that

dLd = Θ+
Ld

− Θ−
Ld
,

and so when Ld is infinitesimally invariant under the lifted action the two
discrete momentum maps are equal. In such cases we will use the notation
JLd

: Q×Q → g∗ for the unique single discrete Lagrangian momentum map.

2 As in the continuous case, equivariance plays an important role in reduction theory
and, in the Hamiltonian context, equivariance guarantees that the momentum map is
Poisson, which is often useful.
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Note that invariance of Ld under the lifted action implies that ΦQ×Q
g

is a special discrete symplectic map. This can be seen by differentiating
Ld ◦ ΦQ×Q

g = Ld with respect to q1 to obtain

D2Ld

(

ΦQ×Q
g (q0, q1)

)

· ∂qΦg(q1) · δq1 = D2Ld(q0, q1) · δq1,

and observing that the left- and right-hand sides are just (ΦQ×Q
g )∗Θ+

Ld
and

Θ+
Ld

, respectively, applied to (q0, q1, δq0, δq1). Hence (ΦQ×Q
g )∗Θ+

Ld
= Θ+

Ld
,

and a similar calculation gives the result for Θ−
Ld

.

We now give the discrete analogue of Noether’s theorem, Theorem 1.2.3,
which states that momentum maps of symmetries are constants of the mo-
tion.

Theorem 1.3.3. (Discrete Noether’s theorem) Consider a given dis-
crete Lagrangian system Ld : Q×Q → R which is invariant under the lift of
the (left or right) action Φ : G × Q → Q. Then the corresponding discrete
Lagrangian momentum map JLd

: Q × Q → g∗ is a conserved quantity of
the discrete Lagrangian map FLd

: Q×Q → Q×Q, so that JLd
◦FLd

= JLd
.

Proof. We will use the same idea as in the proof of the continuous Noether’s
theorem, based on the fact that the variational principle is invariant under
the symmetry action.

Begin by inducing an action of G on the discrete path space Cd(Q) by
using the pointwise action. Then

dGd(qd) · ξCd(Q)(qd) =

N−1
∑

k=0

dLd · ξQ×Q,

and so the space of solutions CLd
(Q) of the discrete Euler–Lagrange equa-

tions is invariant under the lifted action of G, and the discrete Lagrangian
map FLd

: Q×Q → Q×Q commutes with the lifted action Φg : Q×Q →
Q×Q.

Identifying CLd
(Q) with the space of initial conditions Q × Q and using

equation (1.3.4) gives

dGd(qd) · ξC(Q)(qd) = dĜd(q0, q1) · ξQ×Q(q0, q1)

=
((

FN
Ld

)∗(
Θ+

Ld

)

− Θ−
Ld

)

(q0, q1) · ξQ×Q(q0, q1).

For symmetries the left-hand side is zero, and so we have

(Θ+
Ld

· ξQ×Q) ◦ FN
Ld

= Θ−
Ld

· ξQ×Q,

which is simply the statement of preservation of the discrete momentum
map, given that for symmetry actions there is only a single momentum map
and that the above argument holds for all subintervals, including a single
time-step. �
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As in the continuous case, only infinitesimal invariance of the discrete
Lagrangian is actually required for the discrete momentum maps to be con-
served. This is due to the fact that only local invariance is used in the proof
above, and global invariance is not necessary.

Note that if G is not a symmetry of Ld then the two discrete momentum
maps will not be equal, and it is precisely the difference J+

Ld
− J−

Ld
which

describes the evolution of either momentum map during the time-step. To
see this, define

J∆
Ld

(qk, qk+1) = J+
Ld

(qk, qk+1) − J−
Ld

(qk, qk+1)

and observe that the discrete Euler–Lagrange equations imply

J+
Ld

(qk−1, qk) = J−
Ld

(qk, qk+1).

Combining the two above expressions shows that the two discrete momentum
maps evolve according to

J+
Ld

(qk, qk+1) = J+
Ld

(qk−1, qk) + J∆
Ld

(qk, qk+1),

J−
Ld

(qk, qk+1) = J−
Ld

(qk−1, qk) + J∆
Ld

(qk−1, qk).

Clearly, if Ld is invariant then J∆
Ld

= 0, and so the momentum maps are
equal and they are conserved. If not, then these equations describe how the
momentum maps evolve.

1.4. Background: Hamiltonian mechanics

1.4.1. Hamiltonian mechanics

We will only concern ourselves here with the case of a phase space that is
the cotangent bundle of a configuration manifold. Although some of the
elegance and power of the Hamiltonian formalism is lost in this restriction,
it is simpler for our purposes, and of course is the most important case for
applications.

Consider then a configuration manifold Q, and define the phase space to
be the cotangent bundle T ∗Q. The Hamiltonian is a function H : T ∗Q → R.
We will take local coordinates on T ∗Q to be (q, p).

Define the canonical one-form Θ on T ∗Q by

Θ(pq) · upq =
〈

pq, TπT ∗Q · upq
〉

, (1.4.1)

where πT ∗Q : T ∗Q → Q is the standard projection and 〈·, ·〉 denotes the
natural pairing between vectors and covectors. In coordinates, Θ(q, p) =
pidq

i. The canonical two-form Ω on T ∗Q is defined to be

Ω = −dΘ,
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which has coordinate expression Ω(q, p) = dqi ∧ dpi. The pair (T ∗Q,Ω) is
an example of a symplectic manifold and a mapping F : T ∗Q → T ∗Q is said
to be canonical or symplectic if F ∗Ω = Ω. If F ∗Θ = Θ then F is said to
be a special symplectic map, which clearly implies that it is also symplectic.
Note that a particular case of special symplectic maps is given by cotangent
lifts of maps Q → Q, which automatically preserve the canonical one-form
on T ∗Q (see Marsden and Ratiu (1999) for details).

Given a Hamiltonian H, define the corresponding Hamiltonian vector field
XH to be the unique vector field on T ∗Q satisfying

iXH
Ω = dH. (1.4.2)

Writing XH = (Xq, Xp) in coordinates, we see that the above expression is

−Xpidq
i + Xqidpi =

∂H

∂qi
dqi +

∂H

∂pi
dpi,

which gives the familiar Hamilton’s equations for the components of XH ,
namely

Xqi(q, p) =
∂H

∂pi
(q, p), (1.4.3a)

Xpi(q, p) = −
∂H

∂qi
(q, p). (1.4.3b)

The Hamiltonian flow FH : T ∗Q×R → T ∗Q is the flow of the Hamiltonian
vector field XH . Note that, unlike the Lagrangian situation, the Hamil-
tonian vector field XH and flow map FH are always well-defined for any
Hamiltonian.

For any fixed t ∈ R, the flow map F t
H : T ∗Q → T ∗Q is symplectic, as can

be seen by differentiating to obtain

∂

∂t

∣

∣

∣

∣

t=0

(F t
H)∗Ω = LXH

Ω = diXH
Ω + iXH

dΩ

= d2H − iXH
d2Θ = 0,

where we have used Cartan’s magic formula LXα = diXα + iXdα for the
Lie derivative and the fact that d2 = 0.

1.4.2. Hamiltonian form of Noether’s theorem

Consider a (left or right) action Φ : G × Q → Q of G on Q, as in Sec-
tion 1.2. The cotangent lift of this action is ΦT ∗Q : G× T ∗Q → T ∗Q given

by ΦT ∗Q
g (pq) = Φ∗

g−1(pq), which in coordinates is

ΦT ∗Q
(

g, (q, p)
)

=

(

(Φ−1
g )i(q), pj

∂Φj
g

∂qi
(q)

)

.
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This has the corresponding infinitesimal generator ξT ∗Q : T ∗Q → T (T ∗Q)
defined by

ξT ∗Q(pq) =
d

dg

(

ΦT ∗Q
g (pq)

)

· ξ

which has coordinate form

ξT ∗Q(q, p) =

(

qi, pi,−

[(

∂Φ

∂q

)−1]i

j

∂Φj

∂gm
ξm,

pj
∂2Φj

∂qi∂gm
ξm − pj

∂2Φj

∂qi∂qj

[(

∂Φ

∂q

)−1]j

k

∂Φk

∂gm
ξm

)

,

where the derivatives of Φ are all evaluated at (e, q).
The Hamiltonian momentum map JH : T ∗Q → g∗ is defined by

JH(pq) · ξ = Θ(pq) · ξT ∗Q(pq).

For each ξ ∈ g we define Jξ
H : T ∗Q → R by Jξ

H(pq) = JH(pq) · ξ, which has

the expression Jξ
H = iξT∗Q

Θ. Note that the Hamiltonian map is also given
by the expression

JH(pq) · ξ = 〈pq, ξQ(q)〉,

which is useful for computing it in applications.
Writing the requirement for equivariance of a Hamiltonian momentum

map gives the equation

JH ◦ ΦT ∗Q
g = Ad∗

g−1 ◦ JH .

Unlike the Lagrangian setting, however, cotangent lifted actions are always

special symplectic maps, and so we have (ΦT ∗Q
g )∗Θ = Θ irrespective of the

Hamiltonian. This gives the following result.

Theorem 1.4.1. Consider a Hamiltonian system H : T ∗Q → R with a
(left or right) group action Φ : G × Q → Q. Then the Hamiltonian mo-
mentum map JH : T ∗Q → g∗ is always equivariant with respect to the
cotangent lifted action ΦT ∗Q : G× T ∗Q → T ∗Q.

Proof. Once again, we can use exactly the same proof as for Theorem 1.2.2
in the continuous case. The only difference is that H need not be restricted
to ensure that the lifted action is a special symplectic map. �

A Hamiltonian H : T ∗Q → R is said to be invariant under the cotangent

lift of the action Φ : G × Q → Q if H ◦ ΦT ∗Q
g = H for all g ∈ G, in which

case the action is said to be a symmetry for the Hamiltonian. The derivative
of this expression implies that such a Hamiltonian is also infinitesimally
invariant , which is the requirement dH · ξT ∗Q = 0 for all ξ ∈ g, although
the converse is not generally true.
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Theorem 1.4.2. (Hamiltonian Noether’s theorem) Let H : T ∗Q→R

be a Hamiltonian which is invariant under the lift of the (left or right) action
Φ : G × Q → Q. Then the corresponding Hamiltonian momentum map
JH : T ∗Q → g∗ is a conserved quantity of the flow; that is, JH ◦ F t

H = JH
for all times t.

Proof. Recall that (ΦT ∗Q
g )∗Θ = Θ for all g ∈ G as the action is a cotangent

lift, and hence LξT∗Q
Θ = 0. Now computing the derivative of Jξ

H in the
direction given by the Hamiltonian vector field XH gives

dJξ
H ·XH = d(iξT∗Q

Θ) ·XH

= LξT∗Q
Θ ·XH − iξT∗Q

dΘ ·XH

= −iXH
Ω · ξT ∗Q

= −dH · ξT ∗Q = 0

using Cartan’s magic formula LXα = diXα + iXdα and (1.4.2). As F t
H is

the flow map for XH this gives the desired result. �

Noether’s theorem still holds even if the Hamiltonian is only infinitesimally
invariant, as it is only this local statement which is used in the proof.

1.4.3. Legendre transforms

To relate Lagrangian mechanics to Hamiltonian mechanics we define the
Legendre transform or fibre derivative FL : TQ → T ∗Q by

FL(vq) · wq =
d

dǫ

∣

∣

∣

∣

ǫ=0

L(vq + ǫwq),

which has coordinate form

FL : (q, q̇) �→ (q, p) =

(

q,
∂L

∂q̇
(q, q̇)

)

.

If the fibre derivative of L is locally an isomorphism then we say that
L is regular , and if it is a global isomorphism then L is said to be hyper-
regular . We will generally assume that we are working with hyperregular
Lagrangians.

The fibre derivative of a Hamiltonian is the map FH : T ∗Q → TQ
defined by

αq · FH(βq) =
d

dǫ

∣

∣

∣

∣

ǫ=0

H(βq + ǫαq),

which in coordinates is

FH : (q, p) �→ (q, q̇) =

(

q,
∂H

∂p
(q, p)

)

.

Similarly to the situations for Lagrangians, we say that H is regular if FH is a
local isomorphism, and that H is hyperregular if FH is a global isomorphism.
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The canonical one- and two-forms and the Hamiltonian momentum maps
are related to the Lagrangian one- and two-forms and the Lagrangian mo-
mentum maps by pullback under the fibre derivative, so that

ΘL = (FL)∗Θ, ΩL = (FL)∗Ω, and JL = (FL)∗JH .

If we additionally relate the Hamiltonian to the Lagrangian by

H(q, p) = FL(q, q̇) · q̇ − L(q, q̇), (1.4.4)

where (q, p) and (q, q̇) are related by the Legendre transform, then the Ham-
iltonian and Lagrangian vector fields and their associated flow maps will also
be related by pullback to give

XL = (FL)∗XH ; F t
L = (FL)−1 ◦ F t

H ◦ FL.

In coordinates this means that Hamilton’s equations (1.4.3) are equivalent
to the Euler–Lagrange equations (1.3.3). To see this, we compute the deriv-
atives of (1.4.4) to give

∂H

∂q
(q, p) = p ·

∂q̇

∂q
−

∂L

∂q
(q, q̇) −

∂L

∂q̇
(q, q̇)

∂q̇

∂q

=
∂L

∂q
(q, q̇) (1.4.5a)

= −
d

dt

(

∂L

∂q̇
(q, q̇)

)

= −ṗ, (1.4.5b)

∂H

∂q̇
(q, p) = q̇ + p ·

∂q̇

∂p
−

∂L

∂q̇
(q, q̇)

∂q̇

∂p

= q̇, (1.4.5c)

where p = FL(q, q̇) defines q̇ as a function of (q, p).
A similar calculation to the above also shows that if L is hyperregular

and H is defined by (1.4.4) then H will also be hyperregular and the fibre
derivatives will satisfy FH = (FL)−1. The converse statement also holds
(see Marsden and Ratiu (1999) for more details).

The above relationship between the Hamiltonian and Lagrangian flows
can be summarized by the following commutative diagram, where we recall
that the symplectic forms and momentum maps are also preserved under
each map.

TQ
F t
L ��

FL
��

TQ

FL
��

T ∗Q
F t
H

�� T ∗Q

(1.4.6)



Discrete mechanics and variational integrators 381

One consequence of this relationship between the Lagrangian and Ham-
iltonian flow maps is a condition for when the Lagrangian vector field and
flow map are well-defined.

Theorem 1.4.3. Given a Lagrangian L : TQ → R, the Lagrangian vector
field XL, and hence the Lagrangian flow map FL, are well-defined if and
only if the Lagrangian is regular.

Proof. This can be seen by relating the Hamiltonian and Lagrangian set-
tings with FL, or by computing the Euler–Lagrange equations in coordinates
to give

0 = D1L(q, q̇) −
d

dt
D2L(q, q̇)

= D1L(q, q̇) −D1D2L(q, q̇) · q̇ −D2D2L(q, q̇) · q̈.

Thus, q̈ is well-defined as a function of (q, q̇) if and only if D2D2L is in-
vertible, which by the implicit function theorem is equivalent to FL being
locally invertible. �

1.4.4. Generating functions

As with Hamiltonian mechanics, a useful general context for discussing ca-
nonical transformations and generating functions is that of symplectic man-
ifolds. Here we limit ourselves, as above, to the case of T ∗Q with the ca-
nonical symplectic form Ω.

Let F : T ∗Q → T ∗Q be a transformation from T ∗Q to itself and let
Γ(F ) ⊂ T ∗Q×T ∗Q be the graph of F . Consider the one-form on T ∗Q×T ∗Q
defined by

Θ̂ = π∗
2Θ − π∗

1Θ.

where πi : T ∗Q × T ∗Q are the projections onto the two components. The
corresponding two-form is then

Ω̂ = −dΘ̂ = π∗
2Ω − π∗

1Ω.

Denoting the inclusion map by iF : Γ(F ) → T ∗Q × T ∗Q, we see that we
have the identities

π1 ◦ iF = π1|Γ(F ), and π2 ◦ iF = F ◦ π1 on Γ(F ).

Using these relations, we have

i∗F Ω̂ = i∗F (π∗
2Ω − π∗

1Ω)

= (π2 ◦ iF )∗Ω − (π1 ◦ iF )∗Ω

= (π1|Γ(F ))
∗(F ∗Ω − Ω).

Using this last equality, it is clear that F is a canonical transformation if
and only if i∗F Ω̂ = 0 or, equivalently, if and only if d(i∗F Θ̂) = 0. By the
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Poincaré lemma, this last statement is equivalent to there existing, at least
locally, a function S : Γ(F ) → R such that i∗F Θ̂ = dS. Such a function S is
known as the generating function of the symplectic transformation F . Note
that S is not unique.

The generating function S is specified on the graph Γ(F ), and so can be
expressed in any local coordinate system on Γ(F ). The standard choices, for
coordinates (q0, p0, q1, p1) on T ∗Q× T ∗Q, are any two of the four quantities
q0, p0, q1 and p1; note that Γ(F ) has the same dimension as T ∗Q.

1.4.5. Coordinate expression

We will be particularly interested in the choice (q0, q1) as local coordinates
on Γ(F ), and so we give the coordinate expressions for the above general
generating function derivation for this particular case. This choice results
in generating functions of the so-called first kind (Goldstein 1980).

Consider a function S : Q×Q → R. Its differential is

dS =
∂S

∂q0
dq0 +

∂S

∂q1
dq1.

Let F : T ∗Q → T ∗Q be the canonical transformation generated by S. In
coordinates, the quantity i∗F Θ̂ is

i∗F Θ̂ = −p0dq0 + p1dq1,

and so the condition i∗F Θ̂ = dS reduces to the equations

p0 = −
∂S

∂q0
(q0, q1), (1.4.7a)

p1 =
∂S

∂q1
(q0, q1), (1.4.7b)

which are an implicit definition of the transformation F : (q0, p0) �→ (q1, p1).
From the above general theory, we know that such a transformation is auto-
matically symplectic, and that all symplectic transformations have such a
representation, at least locally.

Note that there is not a one-to-one correspondence between symplectic
transformations and real-valued functions on Q×Q, because for some func-
tions the above equations either have no solutions or multiple solutions, and
so there is no well-defined map (q0, p0) �→ (q1, p1). For example, taking
S(q0, q1) = 0 forces p0 to be zero, and so there is no corresponding map ϕ.
In addition, one has to be careful about the special case of generating the
identity transformation, as was noted in Channell and Scovel (1990) and Ge
and Marsden (1988). As we will see later, this situation is identical to the
existence of solutions to the discrete Euler–Lagrange equations, and, as in
that case, we will assume for now that we choose generating functions and
time-steps so that the equations (1.4.7) do indeed have solutions.
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1.5. Discrete variational mechanics: Hamiltonian viewpoint

1.5.1. Discrete Legendre transforms

Just as the standard Legendre transform maps the Lagrangian state space
TQ to the Hamiltonian phase space T ∗Q, we can define discrete Legendre
transforms or discrete fibre derivatives F

+Ld,F
−Ld : Q×Q → T ∗Q, which

map the discrete state space Q×Q to T ∗Q. These are given by

F
+Ld(q0, q1) · δq1 = D2Ld(q0, q1) · δq1,

F
−Ld(q0, q1) · δq0 = −D1Ld(q0, q1) · δq0,

which can be written

F
+Ld : (q0, q1) �→ (q1, p1) = (q1, D2Ld(q0, q1)),

F
−Ld : (q0, q1) �→ (q0, p0) = (q0,−D1Ld(q0, q1)).

If both discrete fibre derivatives are locally isomorphisms (for nearby q0 and
q1), then we say that Ld is regular . We will generally assume that we are
working with regular discrete Lagrangians. In some special cases, such as if
Q is a vector space, it may be that both discrete fibre derivatives are global
isomorphisms. In that case we say that Ld is hyperregular .

Using the discrete fibre derivatives it can be seen that the canonical one-
and two-forms and Hamiltonian momentum maps are related to the discrete
Lagrangian forms and discrete momentum maps by pullback, so that

Θ±
Ld

= (F±Ld)
∗Θ, ΩLd

= (F±Ld)
∗Ω, and J±

Ld
= (F±Ld)

∗JH .

When the discrete momentum maps arise from a symmetry action, the pull-
back of the Hamiltonian momentum map by either discrete Legendre trans-
form gives the unique discrete momentum map JLd

= (F±Ld)
∗JH .

In the continuous case there is a particular relationship between a La-
grangian and a Hamiltonian so that the corresponding vector fields and flow
maps are related by pullback under the Legendre transform. Indeed, we
rarely consider pairs of Lagrangian and Hamiltonian systems which are not
related in this way. In the discrete case a similar relationship exists, as will
be shown in Section 1.6.

Unlike the continuous case, however, we will generally be interested in dis-
crete Lagrangian systems that do not exactly correspond to a given Hamil-
tonian system. In this case, the symplectic structures and momentum maps
are related by pullback under the discrete Legendre transforms, but the flow
maps are not. As we will see later, this is a reflection of the fact that discrete
Lagrangian systems can be regarded as symplectic-momentum integrators.
The relationship between the energies of a discrete Lagrangian system and
a Hamiltonian system is investigated in Part 4.
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1.5.2. Momentum matching

The discrete fibre derivatives also permit a new interpretation of the discrete
Euler–Lagrange equations. To see this, we introduce the notation

p+
k,k+1 = p+(qk, qk+1) = F

+Ld(qk, qk+1),

p−k,k+1 = p−(qk, qk+1) = F
−Ld(qk, qk+1),

for the momentum at the two endpoints of each interval [k, k + 1]. Now
observe that the discrete Euler–Lagrange equations are

D2Ld(qk−1, qk) = −D1Ld(qk, qk+1),

which can be written as

F
+Ld(qk−1, qk) = F

−Ld(qk, qk+1), (1.5.1)

or simply

p+
k−1,k = p−k,k+1.

That is, the discrete Euler–Lagrange equations are simply enforcing the
condition that the momentum at time k should be the same when evaluated
from the lower interval [k− 1, k] or the upper interval [k, k+1]. This means
that along a solution curve there is a unique momentum at each time k,
which we denote by

pk = p+
k−1,k = p−k,k+1.

A discrete trajectory {qk}
N
k=0 in Q can thus also be regarded as either a tra-

jectory {(qk, qk+1)}
N−1
k=0 in Q×Q or, equivalently, as a trajectory {(qk, pk)}

N
k=0

in T ∗Q.
It will be useful to note that (1.5.1) can be written as

F
+Ld = F

−Ld ◦ FLd
. (1.5.2)

A consequence of viewing the discrete Euler–Lagrange equations as a
matching of momenta is that it gives a condition for when the discrete La-
grangian evolution operator and discrete Lagrangian map are well-defined.

Theorem 1.5.1. Given a discrete Lagrangian system Ld : Q × Q → R,
the discrete Lagrangian evolution operator XLd

and the discrete Lagrange
map FLd

are well-defined if and only if F
−Ld is locally an isomorphism.

The discrete Lagrange map is well-defined and invertible if and only if the
discrete Lagrangian is regular.

Proof. Given (q0, q1) ∈ Q×Q, the point q2 ∈ Q required to satisfy

XLd
(q0, q1) = (q0, q1, q1, q2)

is defined by equation (1.5.1), and so q2 is uniquely defined as a function of
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q0 and q1 if and only if F
−Ld is locally an isomorphism. From the definition

of FLd
it is well-defined if and only if XLd

is.
The above argument only implies that FLd

is well-defined as a map, how-
ever, meaning that it can be applied to map forward in time. For it to be
invertible, equation (1.5.1) shows that it is necessary and sufficient for F

+Ld

also to be a local isomorphism, which is equivalent to regularity of Ld. �

1.5.3. Discrete Hamiltonian maps

Using the discrete fibre derivatives also enables us to push the discrete La-
grangian map FLd

: Q×Q → Q×Q forward to T ∗Q. We define the discrete

Hamiltonian map F̃Ld
: T ∗Q → T ∗Q by F̃Ld

= F
±Ld ◦ FLd

◦ (F±Ld)
−1.

The fact that the discrete Hamiltonian map can be equivalently defined
with either discrete Legendre transform is a consequence of the following
theorem.

Theorem 1.5.2. The following diagram commutes.

(q0, q1)
� FLd ��

�

F
+Ld

���
��

��
��

��
��

��
��

�

F
−Ld

����
��

��
��

��
��

��
�

(q1, q2)
�

F
+Ld

���
��

��
��

��
��

��
��

�

F
−Ld

����
��

��
��

��
��

��
�

(q0, p0)
�

F̃Ld

�� (q1, p1)
�

F̃Ld

�� (q2, p2)

(1.5.3)

Proof. The central triangle is simply (1.5.2). Assume that we define the
discrete Hamiltonian map by F̃Ld

= F
+Ld ◦ FLd

◦ (F+Ld)
−1, which gives

the right-hand parallelogram. Replicating the right-hand triangle on the
left-hand side completes the diagram. If we choose to use the other discrete
Legendre transform then the reverse argument applies. �

Corollary 1.5.3. The following three definitions of the discrete Hamil-
tonian map,

F̃Ld
= F

+Ld ◦ FLd
◦ (F+Ld)

−1,

F̃Ld
= F

−Ld ◦ FLd
◦ (F−Ld)

−1,

F̃Ld
= F

+Ld ◦ (F−Ld)
−1,

are equivalent and have coordinate expression F̃Ld
: (q0, p0) �→ (q1, p1),

where

p0 = −D1Ld(q0, q1), (1.5.4a)

p1 = D2Ld(q0, q1). (1.5.4b)
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Proof. The equivalence of the three definitions can be read directly from
the diagram in Theorem 1.5.2.

The coordinate expression for F̃Ld
: (q0, p0) �→ (q1, p1) can be readily

seen from the definition F̃Ld
= F

+Ld ◦ (F−Ld)
−1. Taking initial condition

(q0, p0) ∈ T ∗Q and setting (q0, q1) = (F−Ld)
−1(q0, p0) implies that p0 =

−D1Ld(q0, q1), which is (1.5.4a). Now, letting (q1, p1) = F
+Ld(q0, q1) gives

p1 = D2Ld(q0, q1), which is (1.5.4b). �

As the discrete Lagrangian map preserves the discrete symplectic form and
discrete momentum maps on Q×Q, the discrete Hamiltonian map will pre-
serve the pushforwards of these structures. As we saw above, however, these
are simply the canonical symplectic form and canonical momentum maps on
T ∗Q, and so the discrete Hamiltonian map is symplectic and momentum-
preserving.

We can summarize the relationship between the discrete and continuous
systems in the following diagram, where the dashed arrows represent the
discretization.

TQ,FL
�����

FL

��

Q×Q,FLd

FLd

��
T ∗Q,FH

����� T ∗Q, F̃Ld

(1.5.5)

1.5.4. Discrete Lagrangians are generating functions

As we have seen above, a discrete Lagrangian is a real-valued function on
Q×Q which defines a map F̃Ld

: T ∗Q → T ∗Q. In fact, a discrete Lagrangian

is simply a generating function of the first kind for the map F̃Ld
, in the sense

defined in Section 1.4. This is seen by comparing the coordinate expression
(1.5.4) for the discrete Hamiltonian map with the expression (1.4.7) for the
map generated by a generating function of the first kind.

1.6. Correspondence between discrete and continuous

mechanics

We will now define a particular choice of discrete Lagrangian which gives an
exact correspondence between discrete and continuous systems. To do this,
we must firstly recall the following fact.

Theorem 1.6.1. Consider a regular Lagrangian L for a configuration man-
ifold Q, two points q0, q1 ∈ Q and a time h ∈ R. If ‖q1 − q0‖ and |h| are
sufficiently small then there exists a unique solution q : R → Q of the
Euler–Lagrange equations for L satisfying q(0) = q0 and q(h) = q1.

Proof. See Marsden and Ratiu (1999). �
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For some regular Lagrangian L we now define the exact discrete Lagran-
gian to be

LE
d (q0, q1, h) =

∫ h

0
L(q0,1(t), q̇0,1(t)) dt (1.6.1)

for sufficiently small h and close q0 and q1. Here q0,1(t) is the unique solution
of the Euler–Lagrange equations for L which satisfies the boundary condi-
tions q0,1(0) = q0 and q0,1(h) = q1, and whose existence is guaranteed by
Theorem 1.6.1.

We will now see that with this exact discrete Lagrangian there is an exact
correspondence between the discrete and continuous systems. To do this, we
will first establish that there is a special relationship between the Legendre
transforms of a regular Lagrangian and its corresponding exact discrete La-
grangian. This result will also prove that exact discrete Lagrangians are
automatically regular.

Lemma 1.6.2. A regular Lagrangian L and the corresponding exact dis-
crete Lagrangian LE

d have Legendre transforms related by

F
+LE

d (q0, q1, h) = FL(q0,1(h), q̇0,1(h)),

F
−LE

d (q0, q1, h) = FL(q0,1(0), q̇0,1(0)),

for sufficiently small h and close q0, q1 ∈ Q.

Proof. We begin with F
−LE

d and compute

F
−LE

d (q0, q1, h) = −

∫ h

0

[

∂L

∂q
·
∂q0,1
∂q0

+
∂L

∂q̇
·
∂q̇0,1
∂q0

]

dt

= −

∫ h

0

[

∂L

∂q
−

d

dt

∂L

∂q̇

]

·
∂q0,1
∂q0

dt−

[

∂L

∂q̇
·
∂q0,1
∂q0

]h

0

,

using integration by parts. The fact that q0,1(t) is a solution of the Euler–
Lagrange equations shows that the first term is zero. To compute the second
term we recall that q0,1(0) = q0 and q0,1(h) = q1, so that

∂q0,1
∂q0

(0) = Id and
∂q0,1
∂q0

(h) = 0.

Substituting these into the above expression for F
−LE

d now gives

F
−LE

d (q0, q1, h) =
∂L

∂q̇
(q0,1(0), q̇0,1(0)),

which is simply the definition of FL(q0,1(0), q̇0,1(0)).
The result for F

+LE
d can be established by a similar computation. �
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Since (q0,1(h), q̇0,1(h)) = F h
L(q0,1(0), q̇0,1(0)), Lemma 1.6.2 is equivalent to

the following commutative diagram.

(q0, q1)�

F
−LE

d

����
��

��
��

��
��

��
� �

F
+LE

d

���
��

��
��

��
��

��
��

(q0, p0) (q1, p1)

(q0, q̇0)
�

Fh
L

��
�

FL

��

(q1, q̇1)
�

FL

��

(1.6.2)

Combining this diagram with (1.4.6) and (1.5.3) gives the following com-
mutative diagram for the exact discrete Lagrangian.

(q0, q1)
�

F
LE
d ��

�

F
+LE

d

���
��

��
��

��
��

��
��

�

F
−LE

d

����
��

��
��

��
��

��
�

(q1, q2)
�

F
+LE

d

���
��

��
��

��
��

��
��

�

F
−LE

d

����
��

��
��

��
��

��
�

(q0, p0)
�

F̃
LE
d

=Fh
H

�� (q1, p1)
�

F̃
LE
d

=Fh
H

�� (q2, p2)

(q0, q̇0)
�

Fh
L

��
�

FL

��

(q1, q̇1)
�

Fh
L

��
�

FL

��

(q2, q̇2)
�

FL

��

(1.6.3)

This proves the following theorem.

Theorem 1.6.3. Consider a regular Lagrangian L, its corresponding exact
discrete Lagrangian LE

d , and the pushforward of both the continuous and
discrete systems to T ∗Q, yielding a Hamiltonian system with Hamiltonian
H and a discrete Hamiltonian map F̃LE

d
, respectively. Then, for a sufficiently

small time-step h ∈ R, the Hamiltonian flow map equals the pushforward
discrete Lagrangian map:

F h
H = F̃LE

d
.
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This theorem is a statement about the time evolution of the system, and
can also be interpreted as saying that the diagram (1.5.5) commutes with the
dashed arrows understood as samples at times {tk}

N
k=0, rather than merely

as discretizations.
We can also interpret the equivalence of the discrete and continuous sys-

tems as a statement about trajectories. On the Lagrangian side, this gives
the following theorem.

Theorem 1.6.4. Take a series of times {tk = kh, k = 0, . . . , N} for a
sufficiently small time-step h, and a regular Lagrangian L and its corres-
ponding exact discrete Lagrangian LE

d . Then solutions q : [0, tN ] → Q of
the Euler–Lagrange equations for L and solutions {qk}

N
k=0 of the discrete

Euler–Lagrange equations for LE
d are related by

qk = q(tk) for k = 0, . . . , N, (1.6.4a)

q(t) = qk,k+1(t) for t ∈ [tk, tk+1]. (1.6.4b)

Here the curves qk,k+1 : [tk, tk+1] → Q are the unique solutions of the Euler–
Lagrange equations for L satisfying qk,k+1(kh) = qk and qk,k+1((k + 1)h) =
qk+1.

Proof. The main non-obvious issue is smoothness. Let q(t) be a solu-
tion of the Euler–Lagrange equations for L and define {qk}

N
k=0 by (1.6.4a).

Now the discrete Euler–Lagrange equations at time k are simply a match-
ing of discrete Legendre transforms, as in (1.5.1), but by construction and
Lemma 1.6.2 both sides of this expression are equal to FL(q(tk), q̇(tk)). We
thus see that {qk}

N
k=0 is a solution of the discrete Euler–Lagrange equations.

Conversely, let {qk}
N
k=0 be a solution of the discrete Euler–Lagrange equa-

tions for LE
d and define q : [0, tN ] → Q by (1.6.4b). Clearly q(t) is C2 and

a solution of the Euler–Lagrange equations on each open interval (tk, tk+1),
and so we must only establish that it is also C2 at each tk, from which it
will follow that it is C2 and a solution on the entire interval [0, tN ].

At time tk the discrete Euler–Lagrange equations in the form (1.5.1) to-
gether with Lemma 1.6.2 reduce to

FL(qk−1,k(tk), q̇k−1,k(tk)) = FL(qk,k+1(tk), q̇k,k+1(tk)),

and, as FL is a local isomorphism (due to the regularity of L), we see that
q(t) is C1 on [0, tN ]. The regularity of L also implies that

q̈(t) = (D2D2L)−1(D1L−D1D2L · q̇(t))

on each open interval (tk, tk+1), and as the right-hand side only depends
on q(t) and q̇(t) this expression is continuous at each tk, giving that q(t) is
indeed C2 on [0, tN ]. �
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To summarize, given Lagrangian and Hamiltonian systems with the Le-
gendre transform mapping between them, the symplectic forms and mo-
mentum maps are always related by pullback under FL. If, in addition, L
and H satisfy the special relationship (1.4.4), then the flow maps and energy
functions will also be related by pullback.

Exactly the same statements hold for the relationship between a discrete
Lagrangian system and a Hamiltonian system. However, when discussing
continuous systems we almost always assume that L and H are related by
(1.4.4), whereas for discrete systems we generally do not assume that Ld and
L or H are related by (1.6.1). This is because we are interested in using the
discrete mechanics to derive integrators, and the exact discrete Lagrangian
is generally not computable.

1.7. Background: Hamilton–Jacobi theory

1.7.1. Generating function for the flow

As discussed in Section 1.4, it is a standard result that the flow map F t
H

of a Hamiltonian system is a canonical map for each fixed time t. From
the generating function theory, it must therefore have a generating function
S(q0, q1, t). We will now derive a partial differential equation which S must
satisfy.

Consider first the time-preserving extension of FH to the map

F̂H :T ∗Q× R → T ∗Q× R, (pq, t) �→ (F t
H(pq), t).

Let πT ∗Q : T ∗Q × R → T ∗Q be the projection, and define the extended
canonical one-form and the extended canonical two-form to be

ΘH = i∗T ∗QΘ − i∗T ∗QH ∧ dt,

ΩH = −dΘH = i∗T ∗QΩ − i∗T ∗QdH ∧ dt.

We now calculate

T F̂H ·

(

δpq, δt) = (TF t
H · δpq +

∂

∂t
F t
H(pq) · δt, δt

)

= (TF t
H · δpq + XH ◦ F t

H · δt, δt),

using that F t
H is the flow map of the vector field XH , and so

F̂ ∗
HΩH = (iT ∗Q ◦ F̂H)∗Ω − ((iT ∗Q ◦ F̂H)∗dH) ∧ (F̂ ∗

Hdt)

= i∗T ∗Q(F t
H)∗Ω + (i∗T ∗Q(F t

H)∗dH) ∧ dt− ((iT ∗Q ◦ F̂H)∗dH) ∧ dt

= (iT ∗Q)∗(F t
H)∗Ω = i∗T ∗QΩ

as F t
H preserves Ω for fixed t. This identity essentially states that the ex-

tended flow map pulls back the extended symplectic form to the standard
symplectic form.
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Consider now the space T ∗Q×R×T ∗Q and the projection π1 : T ∗Q×R×
T ∗Q → T ∗Q×R onto the first two components and π2 : T ∗Q×R× T ∗Q →
T ∗Q× R onto the last two components. Define the one-form

Θ̂ = π∗
2ΘH − π∗

1i
∗
T ∗QΘ,

and let the corresponding two-form be

Ω̂ = −dΘ̂ = π∗
2ΩH − π∗

1i
∗
T ∗QΩ.

The flow map of the Hamiltonian system acts as FH : T ∗Q × R → T ∗Q
and so the graph of FH is a subset Γ(FH) ⊂ T ∗Q × R × T ∗Q. Denote the
inclusion map by iFH

: Γ(FH) → T ∗Q× R × T ∗Q. We now observe that

π1 ◦ iFH
= π1|Γ(FH),

π2 ◦ iFH
= F̂H ◦ π1 on Γ(FH),

and using these relations calculate

i∗FH
Ω̂ = i∗FH

π∗
2ΩH − i∗FH

π∗
1i

∗
T ∗QΩ

= (π2 ◦ iFH
)∗ΩH − (π1 ◦ iFH

)∗i∗T ∗QΩ

= (π1|Γ(FH))
∗(F̂ ∗

HΩH − i∗T ∗QΩ)

= 0.

We have thus established that d(i∗FH
Θ̂) = 0 and so, by the Poincaré lemma,

there must locally exist a function S : Γ(FH) → R so that i∗FH
Θ̂ = dS. It is

clear that restricting the above derivations to a section with fixed t simply
reproduces the earlier derivation of generating functions for symplectic maps,
and so the restriction St : Γ(F t

H) → R is a generating function for the map
F t
H : T ∗Q → T ∗Q. The additional information contained in the statement

i∗FH
Θ̂ = dS dictates how S depends on t.

1.7.2. Hamilton–Jacobi equation

As for the case of general generating functions discussed in Section 1.4 we
will now choose a particular set of coordinates on ΓFH and investigate the
implications of i∗FH

Θ̂ = dS.
Consistent with our earlier choice, we will take coordinates (q0, q1, t) for

Γ(FH) and thus regard the generating function as a map S : Q×Q×R → R.
The differential is thus

dS =
∂S

∂q0
dq0 +

∂S

∂q1
dq1 +

∂S

∂t
dt,

and we also get

Θ̂ = −p0dq0 + p1dq1 −H(q1, p1)dt,
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so the condition i∗FH
Θ̂ = dS is

p0 = −
∂S

∂q0
(q0, q1, t),

p1 =
∂S

∂q1
(q0, q1, t),

H

(

q1,
∂S

∂q1
(q0, q1, t)

)

=
∂S

∂t
(q0, q1, t).

The first two equations are simply the standard relations which implicitly
specify the map F t

H from the generating function St. The third equation
specifies the time-dependence of S and is known as the Hamilton–Jacobi
PDE , and can be regarded as a partial-differential equation to be solved
for S.

To fully specify the Hamilton–Jacobi PDE it is necessary also to provide
boundary conditions. As it is first-order in t, it is clear that specifying
S as a function of q0 and q1 at some time t will define the solution in
a neighbourhood of that time. This is equivalent to specifying the map
generated by S at some time, up to an arbitrary function of t. Taking this
to be the flow map for some fixed time, we see that the unique solution of
the Hamilton–Jacobi PDE must be the flow map for nearby t.

1.7.3. Jacobi’s solution

While it is possible in principle to solve the Hamilton–Jacobi PDE directly
for S, it is generally nonlinear and a closed form solution is not normally
possible. By 1840, however, Jacobi had realized that the solution is simply
the action of the trajectory joining q0 and q1 in time t: see Jacobi (1866).
This is known as Jacobi’s solution,

S(q0, q1, t) =

∫ t

0
L(q0,1(τ), q̇0,1(τ)) dτ, (1.7.1)

where q0,1(t) is a solution of the Euler–Lagrange equations for L satisfying
the boundary conditions q(0) = q0 and q(t) = q1, and where L and H are
related by the Legendre transform (assumed to be regular). This can be
proved in the same way as Lemma 1.6.2.

1.8. Discrete variational mechanics: Hamilton–Jacobi

viewpoint

As was discussed in Section 1.5, a discrete Lagrangian can be regarded as the
generating function for the discrete Hamiltonian map F̃Ld

: T ∗Q → T ∗Q.
We then showed in Section 1.6 that there is a particular choice of discrete
Lagrangian, the so-called exact discrete Lagrangian, which exactly generates
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the flow map FH of the corresponding Hamiltonian system. From the devel-
opment of Hamilton–Jacobi theory in Section 1.7, it is clear that this exact
discrete Lagrangian must be a solution of the Hamilton–Jacobi equation. In
fact, as can be seen by comparing the definitions given in equations (1.6.1)
and (1.7.1), the exact discrete Lagrangian is precisely Jacobi’s solution of
the Hamilton–Jacobi equation.

To summarize, discrete Lagrangian mechanics can be regarded as a vari-
ational Lagrangian derivation of the standard generating function and Ham-
ilton–Jacobi theory. Discrete Lagrangians generate symplectic transforma-
tions, and given a Lagrangian or Hamiltonian system, one can construct the
exact discrete Lagrangian which solves the Hamilton–Jacobi equation, and
this will then generate the exact flow of the continuous system.
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PART TWO

Variational integrators

2.1. Introduction

We now turn our attention to considering a discrete Lagrangian system as
an approximation to a given continuous system. That is, the discrete system
is an integrator for the continuous system.

As we have seen, discrete Lagrangian maps preserve the symplectic struc-
ture and so, regarded as integrators, they are necessarily symplectic. Fur-
thermore, generating function theory shows that any symplectic integrator
for a mechanical system can be regarded as a discrete Lagrangian system, a
fact we state here as a theorem.

Theorem 2.1.1. If the integrator F : T ∗Q×R → T ∗Q is symplectic then
there exists3 a discrete Lagrangian Ld whose discrete Hamiltonian map F̃Ld

is F .

Proof. As shown above in Section 1.4, any symplectic transformation loc-
ally has a corresponding generating function, which is then a discrete La-
grangian for the method, as discussed in Section 1.5.4. �

In addition, if the discrete Lagrangian inherits the same symmetry groups
as the continuous system, then the discrete system will also preserve the
corresponding momentum maps. As an integrator, it will thus be a so-called
symplectic–momentum integrator .

Just as with continuous mechanics, we have seen that discrete variational
mechanics has both a variational (Lagrangian) and a generating function
(Hamiltonian) interpretation. These two viewpoints are complementary and
both give insight into the behaviour and derivation of useful integrators.

However, the above theorem is not literally used in the construction of
variational integrators, but is rather used as the first steps in obtaining in-
spiration. We will obtain much deeper insight from the variational principle
itself and this is, in large part, what sets variational methods apart from
standard symplectic methods.

Symplectic integrators have traditionally been approached from a Ham-
iltonian viewpoint and there is much existing literature treating this topic
(see, for example, Hairer, Nørsett and Wanner (1993), Hairer and Wanner
(1996), MacKay (1992) and Sanz-Serna (1992a)). In this paper, we concen-
trate on the analysis of symplectic methods from the variational viewpoint,
and we reinterpret many standard concepts from ODE integration theory in
this light.

3 The discrete Lagrangian may exist only locally, as is the case with generating functions,
as was discussed in Section 1.4.
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It is also important to distinguish the two ways in which we can derive
variational or generating function integrators. First, we can attempt to
approximately solve the Hamilton–Jacobi PDE for a given system, such as
by taking power series expansions of the generating function. This was
used in some of the earliest derivations of symplectic integrators (such as
De Vogelaére (1956) and Channell and Scovel (1990)). Second, the method
we advocate involves trying to approximate the known Jacobi’s solution to
the Hamilton–Jacobi PDE: that is, we construct discrete Lagrangians that
approximate the exact discrete Lagrangian. This approach is powerful not
only because of the coherent and unifying underlying theory that reveals the
beautiful geometry underlying discrete mechanics, but also because it leads
to practical integrators.

In this section we will assume that Q, and thus also TQ and T ∗Q, is a
finite-dimensional vector space with an inner product 〈·, ·〉 and corresponding
norm ‖ · ‖. In the case that it is not a vector space, we can embed Q within
a vector space and use the theory of constrained discrete systems developed
below in Section 3.4 and discussed further in Section 3.5.2.

A word of caution: we must be careful about imagining that we can simply
pick a coordinate chart and apply the vector space methods described below
in such a chart. Doing so indiscriminately can lead to coordinate-dependent
integrators that can be unattractive theoretically as well as impractical: for
instance, using Euler angles for rigid body integrators has the difficulty that
we may spend most of our computational time switching coordinate sys-
tems. See, for instance, Wisdom, Peale and Mignard (1984), Leimkuhler
and Patrick (1996) and related papers. For some special classes of config-
uration manifolds, however, such as when Q is a Lie group, there may be
particular global coordinate systems that can be used for this purpose.

We will also frequently consider integrators for Lagrangian systems of the
form L(q, q̇) = 1

2 q̇
TMq̇ − V (q). When dealing with such systems, we will

always assume that M is a positive-definite symmetric mass matrix, so that
FL(q, q̇) = Mq̇ and thus that L is regular.

2.1.1. Implementation of variational integrators

Although the distinction between the discrete Lagrangian map FLd
: Q ×

Q × R → Q × Q and its pushforward F̃Ld
: T ∗Q × R → T ∗Q is important

geometrically, for implementation purposes the two maps are essentially the
same. This is because of the observation made in Section 1.5.2 that the
discrete Euler–Lagrange equations that define FLd

can be interpreted as
matching of momenta between adjacent intervals.

In other words, given a trajectory q0, q1, q2, . . . , qk−1, qk the map FLd
:

Q×Q× R → Q×Q calculates qk+1 according to

D2Ld(qk−1, qk, h) = −D1Ld(qk, qk+1, h).
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If we now take pk = D2Ld(qk−1, qk, h) for each k, then this equation is simply

pk = −D1Ld(qk, qk+1, h), (2.1.1)

which, together with the next update

pk+1 = D2Ld(qk, qk+1, h), (2.1.2)

defines the pushforward map F̃Ld
: T ∗Q× R → T ∗Q. Another way to think

of this is that the pk are merely storing the values D2Ld(qk−1, qk, h) from
the last step.

For this reason it is typically easier to implement a variational integrator
as the single step map F̃Ld

, as this also provides a simple method of initial-
ization from initial values (q0, p0) ∈ T ∗Q. Many discrete Lagrangians have
pushforward maps that are simple to implement. For example, F̃Ld

may be
explicit, or it may be a Runge–Kutta method or other integrator type with
standard implementation techniques.

In the general case when no special form is apparent, however, the equa-
tions (2.1.1) and (2.1.2) must be solved directly. The update (qk, pk) �→
(qk+1, pk+1) thus involves first solving the implicit equation (2.1.1) for qk+1

and then evaluating the explicit update (2.1.2) to give pk+1.
To solve the implicit equation (2.1.1) we must typically use an iterative

technique such as Newton’s method. This involves computing a first guess
qk+1,0 for qk+1, such as qk+1,0 = 2qk−qk−1, and then computing the sequence
of approximations qk+1,n, n = 1, 2, . . . until they converge to the solution
value qk+1. For Newton’s method, the iteration rule is given by

qik+1,n+1 = qik+1,n −Aij

[

pjk +
∂Ld

∂qj0
(q0, q1, h)

]

,

where Aij is the inverse of the matrix

Aij =
∂2Ld

∂qi0∂q
j
1

(q0, q1, h).

In the case that the Lagrangian has a simple form, such as L(q, q̇) =
1
2 q̇

TMq̇ − V (q), then we can use an initial guess based on pk, such as
qk+1,0 = qk + hM−1pk.

While the Newton’s method outlined above typically experiences very fast
convergence, it is also expensive to have to recompute Aij at each iteration
of the method. For this reason, it is typical to use an approximation to this
matrix which can be held constant for all iterations of Newton’s method. See
Hairer et al. (1993) for details of this approach for Runge–Kutta methods.

2.1.2. Equivalence of integrators

Given two discrete Lagrangians L1
d and L2

d, we would like to know whether
the integrators they generate are the same. Here it will be important to
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distinguish between the discrete Lagrangian maps Q×Q → Q×Q and the
discrete Hamiltonian maps T ∗Q → T ∗Q. We assume that we are dealing
with regular discrete Lagrangians, so that the corresponding maps are well-
defined.

We say that L1
d is (strongly) equivalent to L2

d if their discrete Hamil-

tonian maps are equal, so that F̃L1
d

= F̃L2
d
. Using the expression F̃L1

d
=

F
+L1

d ◦ (F−L1
d)

−1, we see that if L1
d and L2

d are equivalent then their dis-
crete Legendre transforms will be equal. This implies that the difference
L∆
d = L1

d−L2
d must be a function of h only. That is, L∆

d (q0, q1, h) = f(h) for
some function f . This is clearly also a sufficient condition, as well as being
necessary.

We define L1
d to be weakly equivalent to L2

d if their discrete Lagrangian
maps FL1

d
and FL2

d
are equal. A sufficient (and presumably necessary) con-

dition for this to be true is that their difference L∆
d = L1

d − L2
d is a null

discrete Lagrangian; that is, the discrete Euler–Lagrange equations for L∆
d

are satisfied by any triplet (q0, q1, q2). This terminology follows that of the
continuous case, as in, for example, Oliver and Sivaloganathan (1988).

If L∆
d is a null discrete Lagrangian, then D2L

∆
d (q0, q1, h) cannot depend

on q0 and D1L
∆
d (q1, q2, h) cannot depend on q2. Furthermore, these two

derivatives must be the negative of each other for all q1. We thus have that
L∆
d is a null discrete Lagrangian if and only if it is of the form L∆

d (q0, q1, h) =
f(q1, h) − f(q0, h) for some function f .

Using the above calculations, it is clear that strong equivalence implies
weak equivalence of discrete Lagrangians. For variational integrators, weak
equivalence is thus in some sense the more fundamental notion. Intuitively,
if two integrators give solutions which have the same positions qk for all
time, but different momenta pk at each step, then we would like to regard
the methods as being essentially the same. This is exactly weak equivalence.

2.2. Background: Error analysis

In this section we consider a numerical method F : T ∗Q× R → T ∗Q which
approximates the flow FH : T ∗Q× R → T ∗Q of a given Hamiltonian vector
field XH . Error analysis is concerned with difference between an exact
trajectory and a discrete trajectory.4

4 The reader should be cautioned that in many circumstances, such as the integration of
chaotic or complex systems, it may make little sense to imagine accurately computing an
exact, but highly unstable, individual trajectory. Instead, we often want to accurately
compute robust quantities, such as statistical measures that are insensitive to modelling
errors and dynamical sensitivities. This vision, as important as it is, awaits a theory.
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2.2.1. Local error and method order

An integrator F of XH is said to be of order r if there exist an open set
U ⊂ T ∗Q and constants Cl > 0 and hl > 0 so that

‖F (q, p, h) − FH(q, p, h)‖ ≤ Clh
r+1 (2.2.1)

for all (q, p) ∈ U and h ≤ hl. The expression on the left-hand side of this
inequality is known as the local error , and if a method has order of at least
1 then it is said to be consistent .

2.2.2. Global error and convergence

Having defined the error after one step, we now consider the error after
many steps. The integrator F of XH is said to be convergent of order r if
there exist an open set U ⊂ T ∗Q and constants Cg > 0, hg > 0 and Tg > 0
so that

‖(F )N (q, p, h) − FH(q, p, T )‖ ≤ Cgh
r,

where h = T/N , for all (q, p) ∈ U , h ≤ hg and T ≤ Tg. The expression on
the left-hand side is the global error at time T .

For one-step methods such as we consider here, convergence follows from
a local error bound on the method and a Lipschitz bound on XH .

Theorem 2.2.1. Suppose that the integrator F for XH is of order r on
the open set U ⊂ T ∗Q with local error constant Cl, and assume that L > 0
is such that

∥

∥

∥

∥

∂XH

∂(q, p)

∥

∥

∥

∥

≤ L

on U . Then the method is consistent on U with global error constant Cg

given by

Cg =
Cl

L

(

eLTg − 1
)

Proof. See, for example, Hairer et al. (1993). �

2.2.3. Order calculation

Given an integrator F for XH , the order can be calculated by expanding
both the true flow FH and the integrator F in a Taylor series in h and then
comparing terms. If the terms agree up to order r then the method will be
of order r.

Here we explicitly write the first few terms of the Taylor series for the
true flow for a Hamiltonian of the form H(q, p) = 1

2p
TM−1p + V (q). The

corresponding Hamiltonian vector field XH is

q̇ = M−1p, (2.2.2a)

ṗ = −∇V (q), (2.2.2b)
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and so the flow (q(h), p(h)) = FH(q0, p0, h) has the expansion

q(h) = q0 + hM−1p0 −
1

2
h2M−1∇V (q0) + O(h3), (2.2.3a)

p(h) = p0 − h∇V (q0) −
1

2
h2∇2V (q0)M

−1p0 + O(h3). (2.2.3b)

We will see below an example of using this to calculate the order of a
simple class of methods.

2.3. Variational error analysis

Rather than considering how closely the trajectory of F matches the exact
trajectory given by FH , we can alternatively consider how closely a dis-
crete Lagrangian matches the ideal discrete Lagrangian given by the action.
As we have seen in Section 1.6, if the discrete Lagrangian is equal to the
action, then the corresponding discrete Hamiltonian map F̃Ld

will exactly
equal the flow FH . We now investigate what happens when this is only an
approximation.

2.3.1. Local variational order

Recall that the exact discrete Lagrangian (1.6.1) is defined by

LE
d (q0, q1, h) =

∫ h

0
L(q, q̇) dt,

where q(t) is the solution of the Euler–Lagrange equations satisfying q(0) =
q0 and q(h) = q1.

We say that a given discrete Lagrangian Ld is of order r if there exist
an open subset Uv ⊂ TQ with compact closure and constants Cv > 0 and
hv > 0 so that

‖Ld(q(0), q(h), h) − LE
d (q(0), q(h), h)‖ ≤ Cvh

r+1 (2.3.1)

for all solutions q(t) of the Euler–Lagrange equations with initial condition
(q, q̇) ∈ Uv and for all h ≤ hv.

2.3.2. Discrete Legendre transform order

The discrete Legendre transforms F
+Ld and F

−Ld of a discrete Lagrangian
Ld are said to be of order r if there exists an open subset Uf ⊂ T ∗Q with
compact closure and constants Cf > 0 and hf > 0 so that

‖F
+Ld(q(0), q(h), h) − F

+LE
d (q(0), q(h), h)‖ ≤ Cfh

r+1, (2.3.2a)

‖F
−Ld(q(0), q(h), h) − F

−LE
d (q(0), q(h), h)‖ ≤ Cfh

r+1, (2.3.2b)

for all solutions q(t) of the Euler–Lagrange equations with initial condition
(q, q̇) ∈ Uf and for all h ≤ hf .
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The relationship between the orders of a discrete Lagrangian, its discrete
Legendre transforms and its discrete Hamiltonian map is given in the fol-
lowing fundamental theorem.

Theorem 2.3.1. Given a regular Lagrangian L and corresponding Ham-
iltonian H, the following are equivalent for a discrete Lagrangian Ld:

(1) the discrete Hamiltonian map for Ld is of order r,

(2) the discrete Legendre transforms of Ld are of order r,

(3) Ld is equivalent to a discrete Lagrangian of order r.

Proof. Begin by assuming that Ld is equivalent to a discrete Lagrangian of
order r, and we will show that the discrete Legendre transforms are of order
r. From Section 2.1.2 we know that equivalent discrete Lagrangians have
the same discrete Legendre transforms, and we may thus assume without
loss that Ld is itself of order r. Now note that (2.3.1) is equivalent to there
existing a function ev : T ∗Q× R → T ∗Q so that

Ld(q(0), q(h), h) = LE
d (q(0), q(h), h) + hr+1ev(q(0), q(h), h)

with ‖ev(q(0), q(h), h)‖ ≤ Cv on Uv. Also, from Theorem 1.6.1 it is clear
that we can parametrize the set Uv by either the initial condition (q, q̇) or
by the endpoints (q(0), q(h)).

Taking derivatives of the above expression with respect to q(h) gives

F
+Ld(q(0), q(h), h) = F

+LE
d (q(0), q(h), h) + hr+1D2ev(q(0), q(h), h),

and as ev is smooth and bounded on the compact set cl(Uv), so too is D2ev,
giving (2.3.2a). Taking derivatives with respect to q(0) now shows that the
discrete Legendre transforms of Ld are of order r.

Now assume that F
+Ld and F

−Ld are of order r, and set

ev(q(0), q(h), h) =
1

hr+1

[

Ld(q(0), q(h), h) − LE
d (q(0), q(h), h)

]

.

Taking derivatives with respect to q(0) and q(h) and using (2.3.2) shows
that ‖D1ev‖ ≤ Cf and ‖D2ev‖ ≤ Cf on cl(Uf ), which is compact. This
then implies that ev(·, ·, h) is itself locally bounded in its first two argu-
ments, and so there exists a function d(h) and a constant Cv such that
‖ev(q(0), q(h), h)−d(h)‖ ≤ Cv. This then proves that Ld(q(0), q(h), h)−d(h)
has variational order r, and so Ld is equivalent to a discrete Lagrangian of
order r.

We will now show the equivalence of the discrete Hamiltonian map being
of order r and the discrete Legendre transforms being of order r. To do this
we will make use of the following fact, which is a consequence of the implicit
function theorem.
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Assume that we have smooth functions related by

f1(x, h) = g1(x, h) + hr+1e1(x, h),

f2(y, h) = g2(y, h) + hr+1e2(y, h),

with e1 and e2 bounded on some compact sets. Then we have

f2(f1(x, h), h) = g2(g1(x, h), h) + hr+1e12(x, h), (2.3.3a)

f−1
1 (y, h) = g−1

1 (y, h) + hr+1ē1(y, h), (2.3.3b)

for some functions e12(x, h) and ē1(y, h) bounded on compact sets.
Now assume that F

+Ld and F
−Ld are of order r and use Corollary 1.5.3

to write

F̃Ld
= F

+Ld ◦ (F−Ld)
−1,

F̃LE
d

= F
+LE

d ◦ (F−LE
d )−1.

Equation (2.3.3) gives the existence of a bounded function el such that

F̃Ld
(q(0), q(h), h) = F̃LE

d
(q(0), q(h), h) + hr+1el(q(0), q(h), h),

and thus we see that the discrete Hamiltonian map is of order r.
Finally, assume that F̃LE

d
is of order r, and observe that

(F−Ld)
−1(q0, p0) = (q0, πQ ◦ F̃Ld

(q0, p0)),

so (2.3.3) implies (2.3.2b). But now we recall from (1.5.2) that

F
+Ld = F̃Ld

◦ F
−Ld,

and together with (2.3.3a) this gives (2.3.2a), showing that the discrete
Legendre transforms are of order r. �

2.3.3. Variational order calculation

Given a discrete Lagrangian, its order can be calculated by expanding the
expression for Ld(q(0), q(h), h) in a Taylor series in h and comparing this
to the same expansion for the exact Lagrangian. If the series agree up to r
terms then the discrete Lagrangian is of order r.

We explicitly evaluate the first few terms of the expansion of the exact
discrete Lagrangian to give

LE
d (q(0), q(h), h) = hL(q, q̇)+

1

2
h2

(

∂L

∂q
(q, q̇) · q̇ +

∂L

∂q̇
(q, q̇) · q̈

)

+O(h3),

(2.3.4)

where q = q(0), q̇ = q̇(0) and so forth. Higher derivatives of q(t) are de-
termined by the Euler–Lagrange equations.
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Example 2.3.2. An illustrative class of discrete Lagrangian is given by

Lα
d (q0, q1, h) = hL

(

(1 − α)q0 + αq1,
q1 − q0

h

)

for some parameter α ∈ [0, 1]. Calculating the expansion in h gives

Lα
d (q(0), q(h), h) = hL(q, q̇)+

1

2
h2

(

2α
∂L

∂q
(q, q̇) · q̇ +

∂L

∂q̇
(q, q̇) · q̈

)

+O(h3).

Comparing this to the expansion (2.3.4) for the exact discrete Lagrangian
shows that the method is second-order if and only if α = 1/2; otherwise it
is only consistent.

Calculating the discrete Hamiltonian map for L(q, q̇) = 1
2 q̇

TMq̇ − V (q)

gives the integrator F̃α
Ld

: (q0, p0) �→ (q1, p1) defined implicitly by the rela-
tions

q1 − q0
h

= M−1 (αp0 + (1 − α)p1) , (2.3.5a)

p1 − p0

h
= −∇V ((1 − α)q0 + αq1) . (2.3.5b)

Note that this method is explicit for α = 0 or α = 1 and that it is simply
the midpoint rule for α = 1/2. Expanding (2.3.5) in h gives

q1 = q0 + hM−1p0 − (1 − α)h2∇V (q0) + O(h3),

p1 = p0 − h∇V (q0) − αh2∇2V (q0)M
−1p0 + O(h3),

and comparing this to the expansion (2.2.3) of the true flow shows that
the method is second-order if and only if α = 1/2, and otherwise it is only
consistent.

The local error and the discrete Lagrangian error thus agree, as expected.
♦

Example 2.3.3. As the expansions of discrete Lagrangians are linear in
Ld, if we take the symmetrized discrete Lagrangian

Lsym,α
d =

1

2
Lα
d +

1

2
L1−α
d ,

then the expansion will agree with that of the exact discrete Lagrangian up
to terms of order h2, so it gives a method that is second-order for any α. ♦

2.4. The adjoint of a method and symmetric methods

For a one-step method F : T ∗Q × R → T ∗Q the adjoint method is F ∗ :
T ∗Q× R → T ∗Q defined by

(F ∗)h ◦ F−h = Id; (2.4.1)
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that is, (F ∗)h = (F−h)−1. The method F is said to be self-adjoint if F ∗ = F .
Note that we always have F ∗∗ = F .

Given a discrete Lagrangian Ld : Q × Q × R → R, we define the adjoint
discrete Lagrangian to be L∗

d : Q×Q× R → R defined by

L∗
d(q0, q1, h) = −Ld(q1, q0,−h). (2.4.2)

The discrete Lagrangian Ld is said to be self-adjoint if L∗
d = Ld. Note that

L∗∗
d = Ld for any Ld.

Theorem 2.4.1. If the discrete Lagrangian Ld has discrete Hamiltonian
map F̃Ld

then the adjoint L∗
d of the discrete Lagrangian has discrete Ham-

iltonian map equal to the adjoint map, so that F̃L∗

d
= F̃ ∗

Ld
. If the discrete

Lagrangian is self-adjoint then the method is self-adjoint. Conversely, if
the method is self-adjoint then the discrete Lagrangian is equivalent to a
self-adjoint discrete Lagrangian.

Proof. Consider discrete Lagrangians Ld and L∗
d and the corresponding

discrete Hamiltonian maps F̃Ld
and F̃L∗

d
. For F̃Ld

and F̃L∗

d
to be adjoint, the

definition (2.4.1) requires that F̃Ld
(q0, p0,−h) = (q1, p1) and F̃L∗

d
(q1, p1, h) =

(q0, p0) for all (q0, p0). In terms of the generating functions this is

p0 = −D1Ld(q0, q1,−h),

p1 = D2Ld(q0, q1,−h),

p1 = −D1L
∗
d(q1, q0, h),

p0 = D2L
∗
d(q1, q0, h).

(2.4.3)

Equating the expressions for p0 and p1 shows that this, in turn, is equival-
ent to

−D1Ld(q0, q1,−h) = D2L
∗
d(q1, q0, h),

D2Ld(q0, q1,−h) = D1L
∗
d(q1, q0, h).

(2.4.4)

Now, if Ld and L∗
d are mutually adjoint, then the definition (2.4.2) implies

(2.4.4) and so (2.4.3), thus establishing that F̃Ld
and F̃L∗

d
must also be

mutually adjoint, which is written F̃L∗

d
= F̃ ∗

Ld
. Note that this implies that

F̃ ∗
L∗

d
= F̃Ld

.

If Ld is self-adjoint and so Ld = L∗
d, then this immediately gives that

F̃Ld
= F̃ ∗

Ld
and so F̃Ld

is also self-adjoint.

Conversely, if F̃Ld
and F̃L∗

d
are adjoint, then (2.4.1) implies (2.4.3) which

implies (2.4.4). As this simply states that the derivatives of Ld and L∗
d with

respect to q0 and q1 satisfy the requirement (2.4.2) for adjointness it follows
that Ld and L∗

d are mutually adjoint up to the addition of a function of h.

Symmetry of F̃Ld
thus implies symmetry of Ld up to a function of h, and so

Ld is equivalent to a self-adjoint discrete Lagrangian. �



404 J. E. Marsden and M. West

2.4.1. Exact discrete Lagrangian is self-adjoint

It is easy to verify that the exact discrete Lagrangian (1.6.1) is self-adjoint.
This can be done either directly from the definition (2.4.2), or by realizing
that the exact flow map FH generated by LE

d satisfies (2.4.1), and then using
Theorem 2.4.1.

2.4.2. Order of adjoint methods

To relate the expansions of Ld and its adjoint in terms of h, it is necessary
to work with the modified form

L∗
d

(

q(−h/2), q(h/2), h
)

= −Ld

(

q(h/2), q(−h/2),−h
)

,

which can be used in the same way as L∗
d(q(0), q(h), h)=−Ld(q(h), q(0),−h).

From this it is clear that the expansion of L∗
d is the negative of the expansion

of Ld with h replaced by −h. In other words, if Ld has expansion

Ld(h) = hL
(1)
d +

1

2
h2L

(2)
d +

1

6
h3L

(3)
d + · · ·

then L∗
d will have expansion

L∗
d(h) = −(−h)L

(1)
d −

1

2
(−h)2L

(2)
d −

1

6
(−h)3L

(3)
d − · · ·

= hL
(1)
d −

1

2
h2L

(2)
d +

1

6
h3L

(3)
d − · · ·

and so the series agree on odd terms and are opposite on even terms.
This shows that the order of the adjoint discrete Lagrangian L∗

d is the
same as the order of Ld. Furthermore, if Ld is self-adjoint, then all the
even terms in its expansion must be zero, showing that self-adjoint discrete
Lagrangians are necessarily of even order (the first nonzero term, which is
r + 1, must be odd).

These same conclusions can be also be reached by working with the dis-
crete Hamiltonian map, and showing that its adjoint has the same order as
it, and that it is of even order whenever it is self-adjoint. Theorems 2.4.1 and
2.3.1 then give the corresponding statements for the discrete Lagrangians.

Example 2.4.2. Perhaps the simplest example of adjoint discrete La-
grangians is the pair

Ld(q0, q1, h) = hL

(

q0,
q1 − q0

h

)

,

L∗
d(q0, q1, h) = hL

(

q1,
q1 − q0

h

)

,

which clearly satisfy (2.4.2). For a Lagrangian of the form L = 1
2 q̇

TMq̇ −
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V (q) these two discrete Lagrangians produce the methods F̃Ld
and F̃L∗

d

given by

F̃Ld

{

q1 = q0 + hM−1p1,

p1 = p0 − h∇V (q0),

F̃L∗

d

{

q1 = q0 + hM−1p0,

p1 = p0 − h∇V (q1).

In the terminology of Hairer (1998) these are the two types of symplectic
Euler. We can now explicitly compute:

(F̃L∗

d
)h ◦ (F̃Ld

)(−h)(q0, p0) = F̃L∗

d
(q0 + hM−1p1, p0 − h∇V (q0), h)

= (q0, p0),

which shows that F̃Ld
and F̃L∗

d
are indeed mutually adjoint. ♦

Example 2.4.3. The discrete Lagrangians in the previous example are
just Lα

d for α = 0 and α = 1, respectively. Extending this gives (Lα
d )∗ =

L1−α
d , which shows that the midpoint rule (given by α = 1/2) is self-adjoint.

From this it is also clear that the symmetrized versions Lsym,α
d are self-adjoint

for all α. ♦

2.5. Composition methods

We now consider how to combine several discrete Lagrangians together to
obtain a new discrete Lagrangian with higher order, or some other desirable
property. The resulting discrete Hamiltonian map will be the composition of
the maps of the component discrete Lagrangians. References on composition
methods include Yoshida (1990), Qin and Zhu (1992), McLachlan (1995) and
Murua and Sanz-Serna (1999).

The strength of the composition methodology can be illustrated by a few
simple examples. Given a one-step method F : T ∗Q × R → T ∗Q with
corresponding adjoint F ∗, then the method F̂ h = F h/2 ◦ (F ∗)h/2 will be
self-adjoint and have order at least equal to that of F . Furthermore, for
a self-adjoint method F with order r, which we recall must be even, the
method F̂ h = F γh ◦ F (1−2γ)h ◦ F γh with the constant γ = (2 − 21/(r+1))−1

will have order r + 2. This thus provides a simple way to derive methods
of arbitrarily high order starting from a given low-order method. See the
above references for details and more complicated examples.

Consider now discrete Lagrangians Li
d and time-step fractions γi for i =

1, . . . , s satisfying
∑s

i=1 γ
i = 1. Note that the γi may each be positive

or negative. We now give three equivalent interpretations of composition
discrete Lagrangians.
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2.5.1. Multiple steps

Begin by taking a discrete trajectory {qk}
N
k=0, dividing each step (qk, qk+1)

into s substeps (qk = q0
k, q

1
k, q

2
k, . . . , q

s
k = qk+1). Rather than using the same

discrete Lagrangian for each step, as we have previously always assumed,
we will now use the different Li

d on each substep in turn.
This is equivalent to taking the discrete action sum to be

Gd

(

{(qk = q0
k, . . . , q

s
k = qk+1)}

N
k=1

)

=

N
∑

k=0

s
∑

i=1

Li
d(q

i−1
k , qik, γ

ih). (2.5.1)

The discrete Euler–Lagrange equations, resulting from requiring that this
be stationary, pair neighbouring discrete Lagrangians together to give

D2L
i
d(q

i−1
k , qik, γ

ih) + D1L
i+1
d (qik, q

i+1
k , γi+1h) = 0, (2.5.2a)

i = 1, . . . , s− 1,

D2L
s
d(q

s−1
k , qsk, γ

sh) + D1L
1
d(q

0
k+1, q

1
k+1, γ

1h) = 0, (2.5.2b)

where the steps are joined with qsk = q0
k+1.

Considering the Li
d as generating functions for the discrete Hamiltonian

maps F̃Li
d

shows that this is simply taking a step with F̃L1
d

of length γ1h,

followed by a step with F̃L2
d

of length γ2h, and so on. The map over the

entire time-step is thus the composition of the maps

F̃ γsh
Ls
d

◦ · · · ◦ F̃ γ2h
L2
d

◦ F̃ γ1h
L1
d

.

2.5.2. Single step, multiple substeps

We now combine the discrete Lagrangians on each step into one multipoint
discrete Lagrangian defined by

Ld(q
0
k, q

1
k, . . . , q

s
k, h) =

s
∑

i=1

Li
d(q

i−1
k , qik, γ

ih), (2.5.3)

and we define the discrete action sum over the entire trajectory to be

Gd

(

{(qk = q0
k, . . . , q

s
k = qk+1)}

N
k=1

)

=

N
∑

k=0

Ld(q
0
k, q

1
k, . . . , q

s
k, h), (2.5.4)

which is clearly equal to (2.5.1).
Requiring that Gd be stationary gives the extended set of discrete Euler–

Lagrange equations

DiLd(q
0
k, q

1
k, . . . , q

s
k, h) = 0 i = 2, . . . , s (2.5.5a)

Ds+1Ld(q
0
k, q

1
k, . . . , q

s
k, h) + D1Ld(q

0
k+1, q

1
k+1, . . . , q

s
k+1, h) = 0, (2.5.5b)

which are equivalent to (2.5.2a) and (2.5.2b), respectively.
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2.5.3. Single step

Finally, we form a standard discrete Lagrangian which is equivalent to the
above methods. Set the composition discrete Lagrangian to be

Ld(qk, qk+1, h) = ext
(q1

k
,...,qs−1

k
)
Ld(qk = q0

k, q
1
k, q

2
k, . . . , q

s−1
k , qsk = qk+1, h)

(2.5.6)
which is the multipoint discrete Lagrangian defined above, evaluated on the
trajectory within the step which solves (2.5.5a).

Note that the derivatives of this discrete Lagrangian satisfy

D1Ld(qk, qk+1, h) = D1Ld(qk, q
1
k, q

2
k, . . . , q

s−1
k , qk+1, h)

+

s−1
∑

i=1

DiLd(qk, q
1
k, q

2
k, . . . , q

s−1
k , qk+1, h) ·

∂qik
∂qk

= D1Ld(qk, q
1
k, q

2
k, . . . , q

s−1
k , qk+1, h)

= D1L
1
d(qk, q

1
k, γ

1h)

using (2.5.5a), and similarly

D2Ld(qk, qk+1, h) = Ds+1Ld(qk, q
1
k, q

2
k, . . . , q

s−1
k , qk+1, h)

= D2L
s
d(q

s−1
k , qk+1, γ

sh).

This gives the following theorem.

Theorem 2.5.1. Take discrete Lagrangians Li
d and time-step fractions γi

for i = 1, . . . , s satisfying
∑s

i=1 γ
i = 1. Define the composition discrete

Lagrangian Ld by (2.5.6). Then the discrete Hamiltonian map F̃Ld
is

F̃ h
Ld

= F̃ γsh
Ls
d

◦ · · · ◦ F̃ γ2h
L2
d

◦ F̃ γ1h
L1
d

formed by the composition of the discrete Hamiltonian maps for each Li
d.

Proof. The equations that define F̃Ld
are

pk = −D1Ld(qk, qk+1, h) = −D1L
1
d(qk, q

1
k, γ

1h),

pk+1 = D2Ld(qk, qk+1, h) = D2L
s
d(q

s−1
k , qk+1, γ

sh),

together with (2.5.5a), which is equivalent to (2.5.2a), which we write as

pik = D2L
i
d(q

i−1
k , qik, γ

ih) = −D1L
i+1
d (qik, q

i+1
k , γi+1h)
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for i = 1, . . . , s − 1. Setting p0
k = pk and psk = pk+1, we can group these

to give
pi−1
k = −D1L

i
d(q

i−1
k , qik, γ

ih),

pik = D2L
i
d(q

i−1
k , qik, γ

ih),

for i = 1, . . . , s, which are the definition of F̃ γsh
Ls
d

◦ · · · ◦ F̃ γ2h
L2
d

◦ F̃ γ1h
L1
d

, thus

giving the required equivalence. �

2.6. Examples of variational integrators

In this section we will consider a number of standard symplectic methods
and show how to write them as variational integrators. Recall that we are
assuming that Q is a linear space with inner product 〈·, ·〉 and corresponding
norm ‖ · ‖. We will always assume that the Lagrangian L : TQ → R is
regular, so that it has a corresponding Hamiltonian H : T ∗Q → R. In
addition, we will sometimes consider the Lagrangian composed of a kinetic
and a potential energy, so that it is of the form L(q, q̇) = 1

2 q̇
TMq̇ − V (q)

where M is a positive-definite symmetric matrix.

2.6.1. Midpoint rule

Given a Hamiltonian system H : T ∗Q → R, the midpoint rule is an integ-
rator F h : (q0, p0) �→ (q1, p1). Setting z0 = (q0, p0) and z1 = (q1, p1) the map
is defined implicitly by the relation

z1 − z0

h
= XH

(

z1 + z0

2

)

,

where XH is the Hamiltonian vector field. Writing the two components
separately gives

q1 − q0
h

=
∂H

∂p

(

q1 + q0
2

,
p1 + p0

2

)

, (2.6.1a)

p1 − p0

h
= −

∂H

∂p

(

q1 + q0
2

,
p1 + p0

2

)

. (2.6.1b)

The symplectic nature of the midpoint rule is often explained by using the
Cayley transform (this remark is due, as far as we know, to Krishnaprasad
and J. C. Simo; see, for example, Austin, Krishnaprasad and Wang (1993),
Simo, Tarnow and Wong (1992) and Simo and Tarnow (1992), and related
papers). See Marsden (1999) for an exposition of this method.

To write the midpoint rule as a variational integrator, assume that H
is regular and that L is the corresponding regular Lagrangian defined by
(1.4.4). Define the discrete Lagrangian

L
1

2

d (q0, q1, h) = hL

(

q1 + q0
2

,
q1 − q0

h

)

.
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Evaluating the expressions (1.5.4) for the discrete Hamiltonian map gives

p0 = −
h

2

∂L

∂q

(

q1 + q0
2

,
q1 − q0

h

)

+
∂L

∂q̇

(

q1 + q0
2

,
q1 − q0

h

)

,

p1 =
h

2

∂L

∂q

(

q1 + q0
2

,
q1 − q0

h

)

+
∂L

∂q̇

(

q1 + q0
2

,
q1 − q0

h

)

,

and subtracting and adding these two equations produces

p1 − p0

h
=

∂L

∂q

(

q1 + q0
2

,
q1 − q0

h

)

, (2.6.2)

p1 + p0

2
=

∂L

∂q̇

(

q1 + q0
2

,
q1 − q0

h

)

.

The second of these equations is simply the statement that
(

q1 + q0
2

,
p1 + p0

2

)

= FL

(

q1 + q0
2

,
q1 − q0

h

)

,

and so using (1.4.5a) shows that (2.6.2) is equivalent to (2.6.1b), while
(1.4.5c) gives (2.6.1a).

For regular Lagrangian systems, the midpoint discrete Lagrangian L
1/2
d

thus has discrete Hamiltonian map which is the midpoint rule on T ∗Q for
the corresponding Hamiltonian system.

2.6.2. Störmer–Verlet

The Verlet method (Verlet 1967) (also known as Störmer’s rule) was origin-
ally formulated for molecular dynamics problems and remains popular in
that field. The derivation of Verlet as a variational integrator is in Wend-
landt and Marsden (1997a) and is implicitly in Gillilan and Wilson (1992)
as well.

Verlet is usually written for systems of the form L(q, q̇) = 1
2 q̇

TMq̇−V (q),
and was originally formulated as a map Q×Q → Q×Q given by (qk, qk+1) �→
(qk+1, qk+2) with

qk+1 = 2qk − qk−1 + h2ak,

where we use the notation ak = M−1(−∇V (qk)). As can be readily seen,
this is just the discrete Lagrangian map FLd

: Q×Q → Q×Q for either of

L0
d(q0, q1, h) = hL

(

q0,
q1 − q0

h

)

,

L1
d(q0, q1, h) = hL

(

q1,
q1 − q0

h

)

,
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or indeed any affine combination of these two. In particular, consider the
symmetric version

Ld(q0, q1, h) =
1

2
hL

(

q0,
q1 − q0

h

)

+
1

2
hL

(

q1,
q1 − q0

h

)

,

which gives Verlet as the corresponding FLd
. Pushing this forward to T ∗Q

with F
±Ld now gives F̃Ld

: T ∗Q → T ∗Q defined by (1.5.4). Evaluating these
yields

pk = M

(

qk+1 − qk
h

)

+
1

2
h∇V (qk),

pk+1 = M

(

qk+1 − qk
h

)

−
1

2
h∇V (qk+1).

Now we subtract the first equation from the second and solve the first equa-
tion for qk+1 to obtain

qk+1 = qk + hM−1pk +
1

2
h2M−1(−∇V (qk)),

pk+1 = pk + h

(

−∇V (qk) −∇V (qk+1)

2

)

,

which is the so-called velocity Verlet method (Swope, Andersen, Berens and
Wilson 1982, Allen and Tildesley 1987) written on T ∗Q. Using the Legendre
transform FL(q, q̇) = (q,Mq̇) this can also be mapped to TQ.

We thus see that velocity Verlet will preserve the canonical two-form Ω on
T ∗Q, and as Ld is invariant under linear symmetries of the potential, Verlet
will also preserve quadratic momentum maps such as linear and angular
momentum.

2.6.3. Newmark methods

The Newmark family of integrators, originally given in Newmark (1959),
are widely used in structural dynamics codes. They are usually written
(see, for example, Hughes (1987)) for the system L = 1

2 q̇
TMq̇ − V (q) as

maps TQ → TQ given by (qk, q̇k) �→ (qk+1, q̇k+1) satisfying the implicit
relations

qk+1 = qk + hq̇k +
h2

2
[(1 − 2β)a(qk) + 2βa(qk+1)] , (2.6.3a)

q̇k+1 = q̇k + h [(1 − γ)a(qk) + γa(qk+1)] , (2.6.3b)

a(q) = M−1(−∇V (q)), (2.6.3c)

where the parameters γ ∈ [0, 1] and β ∈ [0, 1
2 ] specify the method. It is

simple to check that the method is second-order if γ = 1/2 and first-order
otherwise, and that it is generally explicit only for β = 0.
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The β = 0, γ = 1/2 case is well known to be symplectic (see, for example,
Simo et al. (1992)) with respect to the canonical symplectic form ΩL on
TQ. This can be easily seen from the fact that this method is simply the
pullback by FL of the discrete Hamiltonian map for Lsym,α

d with α = 0 or
α = 1. Note that this method is the same as velocity Verlet.

It is also well known (for example, Simo et al. (1992)) that the Newmark
algorithm with β �= 0 does not preserve the canonical symplectic form.
Nonetheless, based on a remark by Suris, it can be shown (Kane et al. 2000)
that the Newmark method with γ = 1/2 and any β can be generated from
a discrete Lagrangian. To see this, we introduce the map ϕβ : Q×Q → TQ
defined by

ϕβ(qk, qk+1) =

(

qk,
[qk+1 − qk

h

]

−
h

2

[

(1 − 2β)a(qk) + 2βa(qk+1)
]

)

.

Pulling the Newmark map back by ϕβ to a map Q×Q → Q×Q gives the
map (qk, qk+1) �→ (qk+1, qk+2) where

qk+2 − 2qk+1 + qk
h2

= βa(qk+2) + (1 − 2β)a(qk+1) + βa(qk). (2.6.4)

A straightforward calculation now shows that this is in fact the discrete
Lagrange map F

Lβ
d

for the discrete Lagrangian

Lβ
d (q0, q1, h) = h

1

2

(

ηβ(q1) − ηβ(q0)

h

)T

M

(

ηβ(q1) − ηβ(q0)

h

)

−hṼ (ηβ(q0)),

where we have introduced the map ηβ : Q → Q defined by

ηβ(q) = q − βh2M−1∇V (q)

and the modified potential function Ṽ : Q → R satisfying ∇Ṽ ◦ ηβ = ∇V ,
which will exist for small h.

This result shows that the Newmark method for γ = 1/2 is the pullback

of the discrete Hamiltonian map F̃
Lβ
d

by the map F
+Lβ

d ◦ (ϕβ)−1. As the

discrete Hamiltonian map preserves the canonical symplectic form on T ∗Q,

this means that Newmark preserves the two-form [F+Lβ
d ◦(ϕβ)−1]∗Ω on TQ.

Note that this is not the canonical two-form ΩL on TQ, but this is enough
to explain the otherwise inexplicably good long-time behaviour of γ = 1/2
Newmark for nonlinear problems.

An alternative and independent method of analysing the symplectic mem-
bers of Newmark has been given by Skeel, Zhang and Schlick (1997), includ-
ing an interesting nonlinear analysis in Skeel and Srinivas (2000). This is
based on the observation that if we define the map η̄β : TQ → TQ by

η̄β(q, v) =
(

ηβ(q), v
)
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then the pushforward of the Newmark method by η̄β is given by (xk, vk) �→
(xk+1, vk+1), where

xk+1 = xk + hvk +
1

2
h2ak, (2.6.5a)

vk+1 = vk +
1

2
h(ak + ak+1), (2.6.5b)

ak = a(xk + βh2ak). (2.6.5c)

This map can be shown to be symplectic with respect to the canonical
two-form ΩL on TQ, and so Newmark will preserve the two-form (η̄β)∗ΩL

on TQ.
To summarize, we have the following commutative diagram, where the

map F̃
Lβ
d

preserves the canonical two-form Ω on T ∗Q, the map (2.6.5) pre-

serves the Lagrange two-form ΩL on TQ, and we have set γ = 1/2 in the
Newmark equation (2.6.3).

T ∗Q

F̃
L
β
d

��

Q×Q
F
+Lβ

d�� ϕβ

��

(2.6.4)F
L
β
d

��

TQ
η̄β ��

(2.6.3)

��

TQ

(2.6.5)

��
T ∗Q Q×Q

F
+Lβ

d

��
ϕβ

�� TQ
η̄β

�� TQ

2.6.4. Explicit symplectic partitioned Runge–Kutta methods

Symplectic integrators which are explicit partitioned Runge–Kutta methods
were first used by Ruth (1983) and Forest and Ruth (1990), who constructed
them as a composition of steps, each one generated by a generating function
of the third kind. Using the same idea shows that these methods are also
variational, at least for Hamiltonians with kinetic energy of the form T (p) =
1/2pTM−1p for some constant mass matrix M .

It can be shown (Hairer et al. 1993) that explicit symplectic partitioned
Runge–Kutta methods can always be written as the composition of a number
of steps of the method F a,b : T ∗Q× R → T ∗Q given by

q1 = q0 + ahM−1p0,

p1 = p0 − bh∇V (q1),

and of its adjoint method (F a,b)∗, with each step having different parameters
(a, b). Furthermore, it is simple to check that these can be chosen so that
all steps have nonzero a.

We now see, however, that the method F a,b is the discrete Hamiltonian
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map for the discrete Lagrangian La,b
d given by

La,b
d (q0, q1, h) = h

[

b
1

2

(

q1 − q0
h

)T

M

(

q1 − q0
h

)

−
1

a
V (q1)

]

,

and from Theorem 2.4.1 it is clear that (F a,b)∗ is the discrete Hamiltonian

map of the adjoint discrete Lagrangian (La,b
d )∗.

We can thus form a composition discrete Lagrangian as in Theorem 2.5.1
whose discrete Hamiltonian map is the composition of the F a,b and (F a,b)∗,
and is therefore the explicit symplectic partitioned Runge–Kutta method.

2.6.5. Symplectic partitioned Runge–Kutta methods

Partitioned Runge–Kutta methods are a class of integrators about which
much is known and which generalize standard Runge–Kutta methods. The
symplectic members of Runge–Kutta were first identified by Lasagni (1988),
Sanz-Serna (1988) and Suris (1989). Symplectic partitioned Runge–Kutta
methods appeared in Sanz-Serna (1992a) and Suris (1990). Good general
references are Hairer et al. (1993) and Hairer and Wanner (1996). See also
Geng (1995, 2000), Sofroniou and Oevel (1997) and Oevel and Sofroniou
(1997) for order conditions and derivations. An explicit construction has
been given by Suris (1990) for the discrete Lagrangian which generates any
symplectic partitioned Runge–Kutta method. We summarize this derivation
below.

Recall that a partitioned Runge–Kutta method for the regular Lagrangian
system L is a map T ∗Q × R → T ∗Q specified by the coefficients bi, aij , b̃i,
ãij for i, j = 1, . . . , s, and defined by (q0, p0) �→ (q1, p1) for

q1 = q0 + h
s

∑

j=1

bjQ̇j , p1 = p0 + h
s

∑

j=1

b̃jṖj , (2.6.6a)

Qi = q0 + h
s

∑

j=1

aijQ̇j , Pi = p0 + h
s

∑

j=1

ãijṖj , i = 1, . . . , s, (2.6.6b)

Pi =
∂L

∂q̇
(Qi, Q̇i), Ṗi =

∂L

∂q
(Qi, Q̇i), i = 1, . . . , s, (2.6.6c)

where the points (Qi, Pi) are known as the internal stages. In the special
case that aij = ãij and bi = b̃i then a partitioned Runge–Kutta method is
said to be simply a Runge–Kutta method.

It is well known that the method is symplectic (that is, it preserves the
canonical symplectic form Ω on T ∗Q) if the coefficients satisfy

biãij + b̃jaji = bib̃j , i, j = 1, . . . , s, (2.6.7a)

bi = b̃i, i = 1, . . . , s. (2.6.7b)
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We now assume that we have coefficients satisfying (2.6.7) and write a
discrete Lagrangian that generates the corresponding symplectic partitioned
Runge–Kutta method. Given points (q0, q1) ∈ Q×Q, we can regard (2.6.6)
as implicitly defining p0, p1, Qi, Pi, Q̇i and Ṗi for i = 1, . . . , s. Taking these
to be so defined as functions of (q0, q1), we construct a discrete Lagrangian

Ld(q0, q1, h) = h
s

∑

i=1

biL(Qi, Q̇i). (2.6.8)

It can now be shown (Suris 1990) that the corresponding discrete Hamil-
tonian map is exactly the map (q0, p0) �→ (q1, p1), which is the symplectic
partitioned Runge–Kutta method. Nonsymplectic partitioned Runge–Kutta
methods will clearly not have a corresponding discrete Lagrangian formula-
tion.

Theorem 2.6.1. The discrete Hamiltonian map generated by the discrete
Lagrangian (2.6.8) is a symplectic partitioned Runge–Kutta method.

Proof. To check that the discrete Hamiltonian map defined by Ld is in-
deed the partitioned Runge–Kutta method specified by (2.6.6), we need
only check that equations (1.5.4) are satisfied. We compute

∂Ld

∂q0
(q0, q1) = (∆t)

s
∑

i=1

bi

[

∂L

∂q
·
∂Qi

∂q0
+

∂L

∂q̇
·
∂Q̇i

∂q0

]

= (∆t)

s
∑

i=1

bi

[

Ṗi ·
∂Qi

∂q0
+ Pi ·

∂Q̇i

∂q0

]

,

using the definitions for Pi and Ṗi in (2.6.6). Differentiating the definition
for Qi in (2.6.6b) and substituting in this and the definition of Pi in (2.6.6b)
now gives

∂Ld

∂q0
(q0, q1) = (∆t)

s
∑

i=1

bi

[

Ṗi ·

(

I + (∆t)

s
∑

j=1

aij
∂Q̇j

∂q0

)

+

(

p0 + (∆t)
s

∑

j=1

ãijṖj

)

·
∂Q̇i

∂q0

]

= (∆t)

s
∑

i=1

bi

[

Ṗi + p0 ·
∂Q̇i

∂q0

]

+ (∆t)2
s

∑

i=1

s
∑

j=1

(biãij + bjaji)Ṗj ·
∂Q̇i

∂q0
,
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and we can use the symplecticity identities (2.6.7) to obtain

∂Ld

∂q0
(q0, q1) = p0 ·

[

(∆t)
s

∑

i=1

bi
∂Q̇i

∂q0

]

+ (∆t)
s

∑

i=1

biṖi

+ (∆t)
s

∑

j=1

bjṖj ·

[

(∆t)
s

∑

i=1

bi
∂Q̇i

∂q0

]

= −p0,

where we have differentiated the expression for q1 in (2.6.6a) to obtain the
identity

(∆t)

s
∑

i=1

bi
∂Q̇i

∂q0
= −I.

This thus establishes that the first equation of (1.5.4) is satisfied.
Differentiating Ld with respect to q1 and following a similar argument

to that above gives the second part of (1.5.4), and shows that the discrete
Hamiltonian map F̃Ld generated by the discrete Lagrangian (2.6.8) is indeed
the symplectic partitioned Runge–Kutta method. �

This construction thus provides a proof of the well-known fact that the
restrictions (2.6.7) on the coefficients mean that the partitioned Runge–
Kutta method is symplectic, as discrete Hamiltonian maps always preserve
the canonical symplectic form. In addition, the linear nature of the definition
of the discrete Lagrangian (2.6.8) means that it will inherit linear symmetries
of the Lagrangian L, which thus proves the standard result that partitioned
Runge–Kutta methods preserve quadratic momentum maps.

Another way to regard the above derivation is to say that we have written
down a generating function of the first kind for the symplectic partitioned
Runge–Kutta map. A generalization of this is given in Jalnapurkar and
Marsden (200x), where it is shown how to construct generating functions of
arbitrary type for any given symplectic partitioned Runge–Kutta method.

The above construction has also been generalized to multisymplectic par-
tial differential equations in West (2001), thereby obtaining multisymplectic
product partitioned Runge–Kutta methods (Reich 2000).

2.6.6. Galerkin methods

To obtain accurate variational integrators, the results in Section 2.3 show
that the discrete Lagrangian should approximate the action over short tra-
jectory segments. One way to do this practically is to use polynomial ap-
proximations to the trajectories and numerical quadrature to approximate
the integral. This can be shown to be equivalent both to a class of continuous
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Galerkin methods and to a subset of symplectic partitioned Runge–Kutta
methods.

This approach is related to the Continuous Galerkin and Discontinuous
Galerkin methods, as in Estep and French (1994), Hulme (1972a, 1972b)
and Thomée (1997). These methods differ in the precise choice of function
space (continuous or discontinuous) and whether the position and velocity
components are projected separately or the velocity projection is given by
the lift of a position projection.

We know that a discrete Lagrangian should be an approximation

Ld(q0, q1, h) ≈ ext
q∈C([0,h],Q)

G(q),

where C([0, h], Q) is the space of trajectories q : [0, h] → Q with q(0) = q0
and q(h) = q1, and G : C(0, h) → R is the action (1.2.1).

To approximate this quantity, we choose the particular finite-dimensional
approximation Cs([0, h], Q) ⊂ C([0, h], Q) of the trajectory space given by

Cs([0, h], Q) = {q ∈ C([0, h], Q) | q is a polynomial of degree s},

and we approximate the action integral with numerical quadrature to give
an approximate action Gs : C([0, h], Q) → R by

Gs(q) = h
s

∑

i=1

biL
(

q(cih), q̇(cih)
)

, (2.6.9)

where ci ∈ [0, 1], i = 1, . . . , s are a set of quadrature points and bi are
the associated maximal order weights. We now set the Galerkin discrete
Lagrangian to be

Ld(q0, q1, h) = ext
q∈Cs([0,h],Q)

Gs(q), (2.6.10)

which can be practically evaluated. This procedure, of course, is simply
performing Galerkin projection of the weak form of the ODE onto the space
of piecewise polynomial trajectories. Furthermore, as we will show below,
the resulting integrator is a symplectic partitioned Runge–Kutta method.

To make the above equations explicit, choose control times 0 = d0 < d1 <
d2 < · · · < ds−1 < ds = 1 and control points q0

0 = q0, q
1
0, q

2
0, . . . , q

s−1
0 , qs0 =

q1. These uniquely define the degree s polynomial qd(t; q
ν
0 , h) which passes

through each qν0 at time dνh, that is, qd(dνh) = qν0 for ν = 0, . . . , s. Let-

ting l̃ν,s(t) denote the Lagrange polynomials associated with the dν , we can
express qd(t; q

ν
0 , h) as

qd(τh; qν0 , h) =

s
∑

ν=0

qν0 l̃ν,s(τ). (2.6.11)

For qd(t; q
ν
0 , h) to be a critical point of the discrete action (2.6.9) we must
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have stationarity with respect to variations in qν0 for ν = 1, . . . , s − 1. Dif-
ferentiating (2.6.9) and (2.6.11) implies that we have

0 = h

s
∑

i=1

bi

[

∂L

∂q
(cih)l̃ν,s(ci) +

1

h

∂L

∂q̇
(cih)

˙̃
lν,s(ci)

]

(2.6.12)

for each ν = 1, . . . , s − 1, where we denote ∂L
∂q (cih) = ∂L

∂q (qd(cih), q̇d(cih))
and similarly for the other expressions.

The integration scheme (q0, p0) �→ (q1, p1) generated by the Galerkin dis-
crete Lagrangian (2.6.10) is now given implicitly by the relations

−p0 =
∂Ld

∂q0
(q0, q1, h), p1 =

∂Ld

∂q1
(q0, q1, h).

Evaluating these expressions and restating (2.6.12) gives the set of equations

E(0) : −p0 = h

s
∑

i=1

bi

[

∂L

∂q
(cih)l̃0,s(ci) +

1

h

∂L

∂q̇
(cih)

˙̃
l0,s(ci)

]

,

E(ν) : 0 = h

s
∑

i=1

bi

[

∂L

∂q
(cih)l̃ν,s(ci) +

1

h

∂L

∂q̇
(cih)

˙̃
lν,s(ci)

]

, ν = 1, . . . , s− 1,

E(s) : p1 = h

s
∑

i=1

bi

[

∂L

∂q
(cih)l̃s,s(ci) +

1

h

∂L

∂q̇
(cih)

˙̃
ls,s(ci)

]

,

which define the discrete Hamiltonian map (q0, p0) �→ (q1, p1).
The above Galerkin discrete Lagrangian can also be interpreted as a func-

tion of several points, in a similar way to the composition discrete Lagrangi-
ans discussed in Section 2.5. Essentially, we choose a set of interior points
which act as a parametrization of the space of degree s polynomials mapping
[0, h] to Q.

More precisely, we form the multipoint discrete Lagrangian

Ld(q
0
0, q

1
0, . . . , q

s
0, h) = Gs

(

qd(t; q
ν
0 , h)

)

,

where we recall that qd(t; q
ν
0 , h) is the unique polynomial of degree s passing

through qν0 at time dνh and Gs is defined by (2.6.9). This multipoint dis-
crete Lagrangian is the analogue of the discrete Lagrangian (2.5.3). The
appropriate discrete action is then

Gd

(

{(qk = q0
k, . . . , q

s
k = qk+1)}

N
k=1

)

=

N
∑

k=0

Ld(q
0
k, q

1
k, . . . , q

s
k, h),

and the corresponding discrete Euler–Lagrange equations are given by (2.5.5).
Clearly, the discrete Lagrangian defined by extremizing the above multi-
point Ld with respect to the interior points qν0 for ν = 1, . . . , s is just the
original Galerkin discrete Lagrangian (2.6.10), and the extended discrete
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Euler–Lagrange equations are thus equivalent to E(ν) above for ν = 0, . . . , s.
This follows in the same way as the proof of Theorem 2.5.1.

We will now see that these Galerkin variational integrators can be real-
ized as particular examples of Runge–Kutta or partitioned Runge–Kutta
schemes.

Theorem 2.6.2. Take a set of quadrature points ci with corresponding
maximal order weights bi and let Ld be the corresponding Galerkin discrete
Lagrangian (2.6.10). Then the integrator generated by this discrete Lagran-
gian is the partitioned Runge–Kutta scheme defined by the coefficients

bi = b̃i =

∫ 1

0
li,s(ρ)dρ,

aij =

∫ ci

0
lj,s(ρ)dρ,

ãij = b̃j

(

1 −
aji
bi

)

,

(2.6.13)

where the li,s(ρ) are the Lagrange polynomials associated with the ci.

Proof. Given (q0, p0), (q1, p1) and qν0 satisfying E(ν), ν = 0, . . . , s, we will
show that they also satisfy the partitioned Runge–Kutta equations (2.6.6)
written for a Lagrangian system with coefficients given by (2.6.13). We
restate the defining equations here for reference:

q1 = q0 + h

s
∑

j=1

bjQ̇j , p1 = p0 + h

s
∑

j=1

b̃jṖj , (2.6.14a)

Qi = q0 + h
s

∑

j=1

aijQ̇j , Pi = p0 + h
s

∑

j=1

ãijṖj , i = 1, . . . , s, (2.6.14b)

Pi =
∂L

∂q̇
(Qi, Q̇i), Ṗi =

∂L

∂q
(Qi, Q̇i), i = 1, . . . , s. (2.6.14c)

We will show that these equations are satisfied by the discrete Hamiltonian
map.

Set Q̇i = q̇d(cih; qν0 , h) so that q̇d(τh; qν0 , h) =
∑s

j=1 Q̇jlj,s(τ). Integrating

this expression and using the fact that qd(0; qν0 , h) = q0 gives

qd(τh; qν0 , h) = q0 + h
s

∑

j=1

Q̇j

∫ τ

0
lj(ρ)dρ.

Setting Qi = qd(cih; qν0 , h) and using q1 = qd(h; qν0 , h) now gives the first

parts of (2.6.14a) and (2.6.14b) for Qi and q1. Now define Pi and Ṗi accord-
ing to (2.6.14c).
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Until this point we have not made use of the relations E(ν). We will now
begin to do so by forming the sum of the E(ν), ν = 0, . . . , s. This gives

p1 − p0 = h

s
∑

i=1

bi

[

∂L

∂q
(cih)

s
∑

ν=0

l̃ν,s(ci) +
1

h

∂L

∂q̇
(cih)

s
∑

ν=0

˙̃
lν,s(ci)

]

.

However, the Lagrange polynomials l̃ν,s(τ) sum to the identity function,
and therefore the sum of their derivatives must be zero. We thus recover
the second part of (2.6.14a) for p1.

Note that the l̃ν,s+1 are a set of s + 1 independent polynomials of degree
s and thus are a basis for Ps, the space of polynomials of degree s. For each
j = 1, . . . , s the polynomial lj,s is of degree s − 1 and so has an integral of

degree s. This implies that there exist coefficients mj
ν such that

s
∑

ν=0

mj
ν l̃ν,s+1(τ) =

∫ τ

0
lj,s(ρ)dρ− bj .

Differentiating this expression with respect to τ and evaluating it at τ = 0
and τ = 1 gives the following three identities:

s
∑

ν=0

mj
ν
˙̃
lν,s+1(τ) = lj,s(τ),

mj
s =

s
∑

ν=0

mj
ν l̃ν,s+1(1) =

∫ 1

0
lj,s(ρ)dρ− bj = 0,

mj
0 =

s
∑

ν=0

mj
ν l̃ν,s+1(0) = −bj .

If we now form the sum
∑s

ν=0 m
j
νE(ν) and make use of the above identities,

we obtain

bjp0 = h

s
∑

i=1

bi

[

Ṗi

(
∫ ci

0
lj,s(ρ)dρ− bj

)

+
1

h
Pilj,s(ci)

]

= h
s

∑

i=1

Ṗi [bi(aij − bj)] + bjPj ,

which can be rearranged to give the second part of (2.6.14b) for Pi. �

If the âij in Theorem 2.6.2 are equal to the aij , then the method is clearly
the special case of a Runge–Kutta method, rather than the general parti-
tioned Runge–Kutta case. Note that the definition of the âij in (2.6.13) is
simply a rearrangement of the requirement (2.6.7a), and so the partitioned
Runge–Kutta methods equivalent to the Galerkin variational integrators are
naturally symplectic, as is clear from the symplectic nature of variational
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integrators in general. In addition, the additive structure of the Galerkin
discrete Lagrangian means that Ld will inherit linear symmetries of L, so
Noether’s theorem recovers the well-known fact that the partitioned Runge–
Kutta methods will preserve quadratic momentum maps.

A particularly elegant symplectic Runge–Kutta method is the collocation
Gauss–Legendre rule. In the present derivation this results simply from
taking the quadrature points ci to be those given by the Gauss–Legendre
quadrature, which is the highest-order quadrature for a given number of
points. The ci produced in this manner are all strictly between 0 and 1.

If the system being integrated is stiff then better numerical performance
results from having cs = 1, making the integrator stiffly accurate (Hairer
and Wanner 1996). If we also wish to preserve the symmetry of the discrete
Lagrangian, then it is natural to seek the ci giving the highest order quad-
rature rule while enforcing c0 = 0 and cs = 1. This is the so-called Lobatto
quadrature, and the Galerkin variational integrator generated in this way is
the standard Lobatto IIIA–IIIB partitioned Runge–Kutta method .
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PART THREE

Forcing and constraints

3.1. Background: Forced systems

Lagrangian and Hamiltonian systems with external forcing arise in many
different contexts. Particular examples include control forces from actuators,
dissipation and friction, and loading on mechanical systems. As we will see
below, when integrating such systems it is important to take account of the
geometric structure to avoid spurious numerical artifacts. One way to do
this is by extending the discrete variational framework to include forcing,
which we will now do.

3.1.1. Forced Lagrangian systems

A Lagrangian force is a fibre-preserving map fL : TQ → T ∗Q over the
identity, which we write in coordinates as

fL : (q, q̇) �→ (q, fL(q, q̇)).

Given such a force, it is standard to modify Hamilton’s principle, seeking
stationary points of the action, to the Lagrange–d’Alembert principle, which
seeks curves q ∈ C(Q) satisfying

δ

∫ T

0
L(q(t), q̇(t)) dt +

∫ T

0
fL(q(t), q̇(t)) · δq(t) dt = 0, (3.1.1)

where the δ represents variations vanishing at the endpoints. Using integ-
ration by parts shows that this is equivalent to the forced Euler–Lagrange
equations, which have coordinate expression

∂L

∂q
(q, q̇) −

d

dt

(

∂L

∂q̇
(q, q̇)

)

+ fL(q, q̇) = 0. (3.1.2)

Note that these are the same as the standard Euler–Lagrange equations
(1.2.5) with the forcing term added.

3.1.2. Forced Hamiltonian systems

A Hamiltonian force is a fibre-preserving map fH : T ∗Q → T ∗Q over the
identity. Given such a force, we define the corresponding horizontal one-form
f ′
H on T ∗Q by

f ′
H(pq) · upq =

〈

fH(pq), TπQ · upq
〉

,

where πQ : T ∗Q → Q is the projection. This expression is reminiscent of the
definition (1.4.1) of the canonical one-form Θ on T ∗Q, and in coordinates it
is f ′

H(q, p) · (δq, δp) = fH(q, p) · δq, so the one-form is clearly horizontal.
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The forced Hamiltonian vector field XH is now defined to satisfy

iXH
Ω = dH − f ′

H

and in coordinates this gives the well-known forced Hamilton’s equations

Xq(q, p) =
∂H

∂q
(q, p), (3.1.3a)

Xp(q, p) = −
∂H

∂p
(q, p) + fH(q, p), (3.1.3b)

which are the same as the standard Hamilton’s equations (1.4.3) with the
forcing term added to the momentum equation.

3.1.3. Legendre transform with forces

Given a Lagrangian L, we can take the standard Legendre transform FL :
T ∗Q → TQ and relate Hamiltonian and Lagrangian forces by

fL = fH ◦ FL.

If we also have a Hamiltonian H related to L by the Legendre transform
according to (1.4.4) then it can be shown that the forced Euler–Lagrange
equations and the forced Hamilton’s equations are equivalent. That is, if
XL and XH are the forced Lagrangian and Hamiltonian vector fields, re-
spectively, then (FL)∗(XH) = XL.

3.1.4. Noether’s theorem with forcing

We now consider the effect of forcing on the evolution of momentum maps
that arise from symmetries of the Lagrangian L : TQ → R. Let Φ : G×Q →
Q be a symmetry of L and let the Lagangian momentum map JL : TQ → g∗

be as defined in Section 1.2.4.
Evaluating the left-hand side of (3.1.1) for a variation of the form δq(t) =

ξQ(q(t)) gives

∫ T

0
dL · ξTQ dt +

∫ T

0
fL · ξQ dt =

∫ T

0
fL · ξQ dt,

as L is assumed to be invariant. Using integration by parts as in the deriv-
ation of the forced Euler–Lagrange equations, we see that the above expres-
sion is equal to

∫ T

0

[

∂L

∂q
(q, q̇) −

d

dt

(

∂L

∂q̇
(q, q̇)

)

+ fL(q, q̇)

]

+ ΘL · ξTQ|
T
0

= (JL ◦ F T
L )(q(0), q̇(0)) · ξ − JL(q(0), q̇(0)) · ξ,
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and so equating these two statements of (3.1.1) gives

[

(JL ◦ F T
L )(q(0), q̇(0)) − JL(q(0), q̇(0))

]

· ξ =

∫ T

0
fL(q(t), q̇(t)) · ξQ(q(t)) dt.

(3.1.4)
This equation describes the evolution of the momentum map from time 0
to time T , and shows that forcing will generally alter the momentum map.
In the special case that the forcing is orthogonal to the group action, the
above derivation shows that Noether’s theorem will still hold.

Theorem 3.1.1. (Forced Noether’s theorem) Consider a Lagrangian
system L : TQ → R with forcing fL : TQ → T ∗Q and a symmetry action
Φ : G × Q → Q such that 〈fL(q, q̇), ξQ(q)〉 = 0 for all (q, q̇) ∈ TQ and
all ξ ∈ g. Then the Lagrangian momentum map JL : TQ → g∗ will be
preserved by the flow, so that JL ◦ F t

L = JL for all t.

A similar result can also be derived for Hamiltonian systems, either by
taking the Legendre transform of a regular forced Lagrangian system, or
by working directly on the Hamiltonian side as in Section 1.4. For more
details on the relationship between momentum maps and forcing see Bloch,
Krishnaprasad, Marsden and Ratiu (1996b).

Note that, for nonzero forcing, the Lagrangian and Hamiltonian flows do
not preserve the symplectic two-form. This can be seen by calculating dĜ

as was done in Section 1.2.3, and realizing that it contains a term with the
integral of the force which does not vanish except when fL = 0.

3.2. Discrete variational mechanics with forces

3.2.1. Discrete Lagrange–d’Alembert principle

As with other discrete structures, we take two discrete Lagrangian forces
f+
d , f−

d : Q×Q → T ∗Q, which are fibre-preserving in the sense that πQ◦f
±
d =

π±
Q, and which thus have coordinate expressions

f+
d (q0, q1) = (q1, f

+
d (q0, q1)),

f−
d (q0, q1) = (q0, f

−
d (q0, q1)).

We combine the two discrete forces to give a single one-form fd : Q×Q →
T ∗(Q×Q) defined by

fd(q0, q1) · (δq0, δq1) = f+
d (q0, q1) · δq1 + f−

d (q0, q1) · δq0. (3.2.1)

As with discrete Lagrangians, the discrete forces will also depend on the
time-step h, which is important when relating the discrete and continuous
mechanics. Given such forces, we modify the discrete Hamilton’s principle,
following Kane et al. (2000), to the discrete Lagrange–d’Alembert principle,
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which seeks discrete curves {qk}
N
k=0 that satisfy

δ

N−1
∑

k=0

Ld(qk, qk+1) +
N−1
∑

k=0

[

f−
d (qk, qk+1) · δqk + f+

d (qk, qk+1) · δqk+1

]

= 0

(3.2.2)
for all variations {δqk}

N
k=0 vanishing at the endpoints. This is equivalent to

the forced discrete Euler–Lagrange equations

D2Ld(qk−1, qk) +D1Ld(qk, qk+1) + f+
d (qk−1, qk) + f−

d (qk, qk+1) = 0, (3.2.3)

which are the same as the standard discrete Euler–Lagrange equations (1.3.3)
with the discrete forces added. These implicitly define the forced discrete
Lagrangian map fd : Q×Q → Q×Q.

3.2.2. Discrete Legendre transforms with forces

Although in the continuous case we used the standard Legendre transform
for systems with forcing, in the discrete case it is necessary to take the forced
discrete Legendre transforms to be

F
f+Ld : (q0, q1) �→ (q1, p1) = (q1, D2Ld(q0, q1) + f+

d (q0, q1)), (3.2.4a)

F
f−Ld : (q0, q1) �→ (q0, p0) = (q0,−D1Ld(q0, q1) − f−

d (q0, q1)). (3.2.4b)

Using these definitions and the forced discrete Euler–Lagrange equations
(3.2.3), we can see that the corresponding forced discrete Hamiltonian map
F̃Ld

= F
f±Ld ◦FLd

◦ (Ff±Ld)
−1 is given by the map F̃Ld

: (q0, p0) �→ (q1, p1),
where

p0 = −D1Ld(q0, q1) − f−
d (q0, q1), (3.2.5a)

p1 = D2Ld(q0, q1) + f+
d (q0, q1), (3.2.5b)

which is the same as the standard discrete Hamiltonian map (1.5.4) with
the discrete forces added.

3.2.3. Discrete Noether’s theorem with forcing

Consider a group action Φ : G × Q → Q and assume that the discrete
Lagrangian Ld : Q×Q → R is invariant under the lifted product action, as
in Section 1.3.3. We can now calculate (3.2.2) in the direction of a variation
δqk = ξQ(qk) to give

N−1
∑

k=0

dLd(qk, qk+1) · ξQ×Q(qk, qk+1) +

N−1
∑

k=0

fd(qk, qk+1) · ξQ×Q(qk, qk+1)

=

N−1
∑

k=0

fd(qk, qk+1) · ξQ×Q(qk, qk+1),
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or we can use a discrete integration by parts to obtain the alternative ex-
pression

N−1
∑

k=1

[

D2Ld(qk−1, qk) + D1Ld(qk, qk+1) + f+
d (qk−1, qk) + f−

d (qk, qk+1)
]

·ξQ(qk)

+
[

D2Ld(qN−1, qN ) + f+
d (qN−1, qN )

]

· ξQ(qN )

+
[

D1Ld(q0, q1) + f−
d (q0, q1)

]

· ξQ(q0)

= F
f+Ld(qN−1, qN ) · ξQ(qN ) − F

f−Ld(q0, q1) · ξQ(q0).

We now consider how the discrete momentum map should be defined in
the presence of forcing, as there is a choice between the expressions (1.2.7)
involving Θ±

Ld
and the expressions

Jf+
Ld

(q0, q1) · ξ =
〈

F
f+Ld(q0, q1), ξQ(q1)

〉

, (3.2.6a)

Jf−
Ld

(q0, q1) · ξ =
〈

F
f−Ld(q0, q1), ξQ(q1)

〉

, (3.2.6b)

which are based on the discrete Legendre transforms. In the unforced dis-
crete case and in the continuous case both with and without forcing, these
expressions are equal to the definition based on ΘL and so the question
does not arise. For a discrete system, however, consideration of the forced
exact discrete Lagrangian defined below shows that (3.2.6) are the correct
definitions. Given this, we can equate the above two forms of (3.2.2) to
obtain

[

Jf+
Ld

◦ FN−1
Ld

− Jf−
Ld

]

(q0, q1) · ξ =

N−1
∑

k=0

fd(qk, qk+1) · ξQ×Q(qk, qk+1),

which describes the evolution of the discrete momentum map. If the discrete
forces are orthogonal to the group action, so that 〈fd, ξQ×Q〉 = 0 for all ξ ∈ g,
then we have

0 =
〈

dLd + fd, ξQ×Q

〉

= Jf+
Ld

− Jf−
Ld

,

and thus the two discrete Lagrangian momentum maps are equal. Denoting

this unique map by Jf
Ld

: Q × Q → g∗, we see that the momentum map
evolution equation gives a forced Noether’s theorem for discrete mechanics.

Theorem 3.2.1. (Discrete forced Noether’s theorem) Consider a dis-
crete Lagrangian system Ld : Q×Q → R with discrete forces f+

d , f−
d : Q×

Q → T ∗Q and a symmetry action Φ : G×Q → Q such that 〈fd, ξQ×Q〉 = 0

for all ξ ∈ g. Then the discrete Lagrangian momentum map Jf
Ld

: Q×Q →
g∗ will be preserved by the discrete Lagrangian evolution map, so that

Jf
Ld

◦ FLd
= Jf

Ld
.
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With the above definition of the discrete Lagrangian momentum map in
the presence of forcing, we see that it will be the pullback of the Hamiltonian
momentum map under the forced discrete Legendre transforms, and so the
discrete forced Noether’s theorem can also be stated for the forced discrete
Hamiltonian map F̃Ld

with the canonical momentum map JH : T ∗Q → g∗.
As in the continuous case, a similar calculation to that given above shows

that the discrete symplectic form will not be preserved in the presence of
forcing.

3.2.4. Exact discrete forcing

In the unforced case, we have seen that the discrete Lagrangian should ap-
proximate the continuous action over the time-step. When forces are added,
this must be modified so that the discrete Lagrange–d’Alembert principle
(3.2.2) approximates the continuous expression (3.1.1).

Given a Lagrangian L : TQ → R and a Lagrangian force fL : TQ → T ∗Q,
we define the exact forced discrete Lagrangian LE

d : Q×Q×R → R and the

exact discrete forces fE+
d , fE−

d : Q×Q× R → T ∗Q to be

LE
d (q0, q1, h) =

∫ h

0
L(q(t), q̇(t)) dt, (3.2.7a)

fE+
d (q0, q1, h) =

∫ h

0
fL(q(t), q̇(t)) ·

∂q(t)

∂q1
dt, (3.2.7b)

fE−
d (q0, q1, h) =

∫ h

0
fL(q(t), q̇(t)) ·

∂q(t)

∂q0
dt, (3.2.7c)

where q : [0, h] → Q is the solution of the forced Euler–Lagrange equa-
tions (3.1.2) for L and fL satisfying the boundary conditions q(0) = q0 and
q(h) = q1.

Note that this exact discrete Lagrangian is not the same as that for the
unforced system with Lagrangian L, as the curves q(t) are different. In
other words, the exact discrete Lagrangian depends on both the continuous
Lagrangian and the continuous forces, as do the discrete forces.

Given these definitions of the exact discrete quantities and the forced
discrete Legendre transforms, it is easy to check that the forced version of
Lemma 1.6.2 holds, and thus so too do forced versions of Theorems 1.6.4 and
1.6.3, showing the equivalence of the exact discrete system to the continuous
systems. This is of particular interest because it shows that the variational
error analysis developed in Section 2.3 can also be extended to the case of
forced systems in the obvious way, and that there will be a forced version of
Theorem 2.3.1.

Note that, if Φ: G×Q→Q is a symmetry of L such that 〈fL(q, q̇), ξQ(q)〉=
0, so the forced Noether’s theorem holds, then the exact discrete forces will
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satisfy 〈fd, ξQ×Q〉 = 0 and so the forced discrete Noether’s theorem will also
hold, as we would expect. This shows that (3.2.6) are the correct choice for
the definition of the discrete Lagrangian momentum maps in the presence
of forcing.

3.2.5. Integration of forced systems

To simulate a given forced Lagrangian or Hamiltonian system, we can choose
a discrete Lagrangian and discrete forces to approximate the exact quantities
given above, and then consider the resulting discrete system as an integrator
for the continuous problem. We now give some simple examples of how to
effect this.

Example 3.2.2. The natural discrete forces for the discrete Lagrangian
Lα
d given in Example 2.3.2 are

fα+
d (q0, q1, h) = αhfL

(

(1 − α)q0 + αq1,
q1 − q0

h

)

,

fα−
d (q0, q1, h) = (1 − α)hfL

(

(1 − α)q0 + αq1,
q1 − q0

h

)

.

For L = 1
2 q̇

TMq̇ − V (q), the discrete Hamiltonian map is then

q1 − q0
h

= M−1 (αp0 + (1 − α)p1) ,

p1 − p0

h
= −∇V ((1 − α)q0 + αq1)

+ fH ((1 − α)q0 + αq1, αp0 + (1 − α)p1) ,

which is the same as the unforced map (2.3.5) with the Hamiltonian force
fH = (FL)−1 ◦ fL added to the momentum equation. For α = 1/2 this is
once again simply the midpoint rule. ♦

A particularly interesting class of Lagrangian forces fL : TQ → T ∗Q
consists of those forces that satisfy

〈

fL(q, q̇), (q, q̇)
〉

< 0,

for all (q, q̇) ∈ TQ. Such forces are said to be (strongly) dissipative. This
terminology can be justified by computing the time evolution of the energy
EL : TQ → R along a solution of the forced Euler–Lagrange equations
to give

d

dt
EL(q(t), q̇(t)) =

d

dt

(

∂L

∂q̇

)

· q̇ +
∂L

∂q̇
· q̈ −

d

dt
L

=

(

∂L

∂q
+ fL

)

· q̇ +
∂L

∂q̇
· q̈ −

∂L

∂q
· q̇ −

∂L

∂q̇
· q̈

= fL(q(t), q̇(t)) · q̇(t).
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Fig. 2. Energy of a dissipative system computed with
variational midpoint and Runge–Kutta. Note the ac-
curate energy behaviour of the variational method

We thus see that dissipative forces are those for which the energy of the
system always decreases. If we only have fL · q̇ ≤ 0 then the force is said to
be weakly dissipative.

Because the discrete Euler–Lagrange equations do not, in general, con-
serve energy, it is unlikely that, without some time-step adaptation, there is
a discrete analogue of this result.

Example 3.2.3. As an example of a dissipative system, consider the move-
ment of a unit mass particle in the plane with radial potential V (q) =
‖q‖2(‖q‖2 − 1)2 and forcing fL(q, q̇) = −10−3q̇. For this force we have
fL · q̇ = −10−3‖q̇‖2 ≤ 0.

In Figure 2 we plot the energy behaviour of the Lα
d method with α = 1/2

for this system. For comparison, we also plot an extremely accurate bench-
mark trajectory, showing the true energy of the system, and the trajectory
of the standard fourth-order Runge–Kutta method.

Observe that the variational method dissipates energy due to the discrete
forces added to the Euler–Lagrange equations, but this energy dissipation
is of the correct amount to accurately track the true energy. In contrast,
non-conservative methods such as the Runge–Kutta integrator used here
artificially dissipate energy.

These effects are of particular importance when the amount of forcing or
dissipation in the system is small compared to the magnitude of the con-
servative dynamics and the time period of integration. For an investigation
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of the long time behaviour of symplectic methods applied to systems with
dissipation, see Hairer and Lubich (1999). ♦

Example 3.2.4. (Composition methods) Consider a sequence of dis-
crete Lagrangians Li

d, discrete forces f i+
d , f i−

d and time-step fractions γi for
i = 1, . . . , s satisfying

∑s
i=1 γ

i = 1. Then we can form a composition dis-
crete Lagrangian Ld and composition discrete forces f+

d , f−
d in a similar way

to the procedures in Section 2.5.
Given points q0 and qs, define qi for i = 1, . . . , s− 1 to satisfy the forced

discrete Euler–Lagrange equations (3.2.3) along the sequence q0, q1, . . . , qs.
Regarding the qi as functions of q0 and q1, we now define the composition
discrete Lagrangian and composition discrete forces by

Ld(q0, q1, h) =
s

∑

i=1

Ld(qi−1, qi, γ
ih),

f+
d (q0, q1, h) = fs+

d (qs−1, qs, γ
sh)

+

s−1
∑

i=1

(

f i+
d (qi−1, qi, γ

ih) + f i−
d (qi, qi+1, γ

i+1h)
)

·
∂qi
∂q1

,

f−
d (q0, q1, h) = f1−

d (q0, q1, γ
1h)

+

s−1
∑

i=1

(

f i+
d (qi−1, qi, γ

ih) + f i−
d (qi, qi+1, γ

i+1h)
)

·
∂qi
∂q0

.

With these definitions it can be shown, using a similar derivation to that in
Section 2.5, that the forced discrete Hamiltonian map for Ld and f+

d , f−
d is

the composition of the individual forced discrete Hamiltonian maps, so that

F̃ h
Ld

= F̃ γsh
Ls
d

◦ F̃ γs−1h

Ls−1

d

◦ · · · ◦ F̃ γ1h
L1
d

.

In forming composition methods it is often useful to use a sequence consisting
of copies of a method together with its adjoint. It is thus worth noting that
the adjoint of a discrete Lagrangian and discrete forces is given by

L∗
d(q0, q1, h) = −Ld(q1, q0,−h),

f∗+
d (q0, q1, h) = −f−

d (q1, q0,−h),

f∗−
d (q0, q1, h) = −f+

d (q1, q0,−h).

The discrete Hamiltonian map of the adjoint discrete Lagrangian and adjoint
discrete forces will be the adjoint map of the original discrete Hamiltonian
map. Observe that the exact discrete Lagrangian and exact discrete forces
(3.2.7) are self-adjoint. ♦
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Example 3.2.5. (Symplectic partitioned Runge–Kutta methods)
Recall that the discrete Lagrangian (2.6.8) given by

Ld(q0, q1, h) = h
s

∑

i=1

biL(Qi, Q̇i)

generates symplectic partitioned Runge–Kutta methods. Reasonable choices
of corresponding discrete forces are

f+
d (q0, q1, h) = h

s
∑

i=1

bifL(Qi, Q̇i) ·
∂Qi

∂q0
, (3.2.8a)

f−
d (q0, q1, h) = h

s
∑

i=1

bifL(Qi, Q̇i) ·
∂Qi

∂q1
, (3.2.8b)

which approximate the exact forces (3.2.7b) and (3.2.7c) in the same way
that Ld approximates the exact discrete Lagrangian (3.2.7a).

With these choices of discrete forces, it can be shown that the discrete
Hamiltonian map defined by (3.2.5) is exactly a partitioned Runge–Kutta
method for the forced Hamiltonian system (3.1.3). ♦

In most of the other examples of variational integrators discussed above,
discrete forces can be chosen in a natural way so that the discrete Hamil-
tonian maps give the expected integrator for the forced Hamiltonian system.
In particular, this can be done for the symplectic Newmark methods (see
Kane et al. (2000)). We can also use alternative splitting-style methods to
include forcing (see Kane et al. (2000) for details).

3.3. Background: Constrained systems

A particularly elegant way to study many systems is to consider them as a
constrained version of some larger system. This can be appealing for both
theoretical reasons and, as we shall see, also on numerical grounds. Here we
will only consider so-called holonomic constraints, which are constraints on
the configuration manifold of a system.

More precisely, if we have a Lagrangian or Hamiltonian system with con-
figuration manifold Q, we consider a constraint function φ : Q → R

d and
constrain the dynamics to the constraint submanifold N = φ−1(0) ⊂ Q.
Here we will always assume that 0 ∈ R

d is a regular point of φ, so that N is
truly a submanifold of Q (Abraham et al. 1988).

Observe that, if i : N → Q is the embedding map, then Ti : TN → TQ
provides a canonical way to embed TN in TQ and we will thus regard TN
as a submanifold of TQ. There is, however, no canonical way to embed the
cotangent bundle T ∗N in T ∗Q, a fact which has important consequences for
the development of constrained Hamiltonian dynamics. We will see below
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that, in the special case when we have a regular Lagrangian or Hamiltonian,
we can use this additional structure to provide a canonical embedding.

As in other areas of mechanics, we may consider constrained systems from
both the Hamiltonian and the Lagrangian viewpoint. We will concentrate
on the variational approach, however, as it is this formulation which readily
extends to the discrete setting. The primary tool for constrained optimiza-
tion problems is the Lagrange multiplier theorem, which we recall here (see
Abraham et al. (1988) for the proof).

Theorem 3.3.1. Consider a smooth manifold C and a function Φ : C → V
mapping to some inner product space V , such that 0 ∈ V is a regular point of
Φ. Set D = Φ−1(0) ⊂ C. Given a function G : C → R, define Ḡ : C × V → R

by Ḡ(q, λ) = G(q) − 〈λ,Φ(q)〉. Then the following are equivalent:

(1) q ∈ D is an extremum of G|D;

(2) (q, λ) ∈ C × V is an extremum of Ḡ.

3.3.1. Constrained Lagrangian systems

Given a Lagrangian system specified by a configuration manifold Q and a
Lagrangian L : TQ → R, consider the holonomic constraint φ : Q → R

d

and the corresponding constraint submanifold N = φ−1(0) ⊂ Q. Now TN
is a submanifold of TQ, and so we may restrict L to LN = L|TN . We are
interested in the relationship of the dynamics of LN on TN to the dynamics
of L on TQ.

To consider this, we will make use of the following convenient notation.
Assume that we are working on a given time interval [0, T ] ⊂ R, and that
we have fixed endpoints q0, qT ∈ N ⊂ Q. Now set C(Q) = C([0, T ], Q; q0, qT )
to be the space of smooth functions q : [0, T ] → Q satisfying q(0) = q0
and q(T ) = qT , and C(N) to be the corresponding space of curves in N .
Similarly, we set C(Rd) = C([0, T ],Rd) to be curves λ : [0, T ] → R

d with no
boundary conditions. In general C(P ) is the space of curves from [0, T ] to
the manifold P with the appropriate boundary conditions.

Theorem 3.3.2. Given a Lagrangian system L : TQ → R with holonomic
constraint φ : Q → R

d, set N = φ−1(0) ⊂ Q and LN = L|TN . Then the
following are equivalent:

(1) q ∈ C(N) extremizes GN and hence solves the Euler–Lagrange equa-
tions for LN ;

(2) q ∈ C(Q) and λ ∈ C(Rd) satisfy the constrained Euler–Lagrange equa-
tions

∂L

∂qi
(q(t), q̇(t)) −

d

dt

(

∂L

∂q̇i
(q(t), q̇(t))

)

=

〈

λ(t),
∂φ

∂qi
(q(t))

〉

, (3.3.1a)

φ(q(t)) = 0; (3.3.1b)



432 J. E. Marsden and M. West

(3) (q, λ) ∈ C(Q × R
d) extremizes Ḡ(q, λ) = G(q) − 〈λ,Φ(q)〉 and hence

solves the Euler–Lagrange equations for the augmented Lagrangian L̄ :
T (Q× R

d) → R defined by

L̄(q, λ, q̇, λ̇) = L(q, q̇) − 〈λ, φ(q)〉 .

Proof. We make use of the Lagrange multiplier theorem, Theorem 3.3.1. To
do so, we prepare the following definitions. The full space is C = C(Q) and
the function to be extremized is the action G : C(Q) → R. Take V = C(Rd)
with the L2 inner product and define the constraint function Φ : C → V by
Φ(q)(t) = φ(q(t)). Clearly Φ(q) = 0, and hence φ(q(t)) = 0 for all t ∈ [0, T ],
if and only if q ∈ C(N). We thus obtain that the constraint submanifold is
D = Φ−1(0) = C(N).

Condition (1) simply means that q ∈ C(N) = D is an extremum of the
action for LN , which is readily seen to be the standard action restricted
to C(N). Thus q ∈ D is an extremum of G|D and so, by the Lagrange
multiplier theorem, this is equivalent to (q, λ) ∈ C × V being an extremum
of Ḡ(q, λ) = G(q) − 〈λ,Φ(q)〉.

Now C × V = C(Q) × C(Rd) and so it can be identified with C(Q × R
d).

Furthermore, we see that Ḡ : C(Q× R
d) → R is

Ḡ(q, λ) = G(q) − 〈λ,Φ(q)〉

=

∫ T

0
L(q(t), q̇(t)) dt−

∫ T

0
〈λ(t),Φ(q)(t)〉 dt

=

∫ T

0
[L(q(t), q̇(t)) − 〈λ(t), φ(q(t))〉] dt,

which is simply the action for the augmented Lagrangian L̄(q, λ, q̇, λ̇) =
L(q, q̇) − 〈λ, φ(q)〉. As (q, λ) ∈ C(Q × R

d) must extremize this action, we
see that it is a solution of the Euler–Lagrange equations for L̄, which is
statement (3).

Finally, we extremize Ḡ by solving dḠ = 0 to obtain the Euler–Lagrange
equations. The standard integration by parts argument gives (3.3.1a) for
variations with respect to q, and variations with respect to λ imply (3.3.1b),
and thus we have equivalence to statement (2). �

If i : N → Q is the embedding, then by differentiating LN = L ◦ Ti with
respect to q̇ we see that

∂LN

∂q̇
(vq) · wq =

∂L

∂q̇

(

Ti(vq)
)

· Ti · wq, (3.3.2)

which means that if L is regular then so is LN and shows that the following
diagram commutes.
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TQ|N
FL �� T ∗Q|N

T ∗i

��
TN

T i

��

FLN

�� T ∗N

(3.3.3)

Using this together with the fact that πQ ◦ Ti = i ◦ πN for the projections
πQ : TQ → Q and πN : TN → N , we compute the pullback of the Lagrange
one-form ΘL on TQ to be

(

(Ti)∗ΘL

)

(vq) · δvq =
〈

FL
(

Ti(vq)
)

, TπQ ◦ T (Ti) · δvq
〉

=
〈

FL
(

Ti(vq)
)

, T i ◦ TπN · δvq
〉

=
〈

FLN (vq), TπN · δvq
〉

,

and thus we see that (Ti)∗ΘL = ΘLN , and so

(Ti)∗ΩL = ΩLN . (3.3.4)

Using the projection T ∗i : T ∗Q → T ∗N we can reinterpret statement (2) of
Theorem 3.3.2. Observe that the span of the ∇φi, i = 1, . . . , d is exactly the
null space of T ∗i, and so (3.3.1) is equivalent to

(T ∗i)q(t)

[

∂L

∂q
(q(t), q̇(t)) −

d

dt

(

∂L

∂q̇
(q(t), q̇(t))

)]

= 0. (3.3.5)

The above relationships hold for any Lagrangian L, irrespective of regularity.
Also note that, although there is a canonical projection T ∗i : T ∗Q → T ∗N ,
there is no corresponding canonical embedding of T ∗N into T ∗Q. We will
see below that when L is regular we can use the Legendre transform to define
such an embedding.

3.3.2. Constrained Hamiltonian systems: Augmented approach

One can consider the Hamiltonian formulation of constrained systems by
either working on the augmented space T ∗(Q× R

d), or working directly on
T ∗N , which gives the Dirac theory of constraints. We consider the former
option first.

Given a Hamiltonian H : T ∗Q → R, we define the augmented Hamiltonian
to be

H̄(q, λ, p, π) = H(q, p) + 〈λ, φ(q)〉 ,

where π is the conjugate variable to λ. We now consider the primary con-
straint set Π ⊂ T ∗(Q×R

d) defined by π = 0. Pulling Ω back to Π gives the
degenerate two-form ΩΠ, and the augmented Hamiltonian vector field X̄H̄

is defined by

iX̄H̄
ΩΠ = dH̄,
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which in coordinates is the set of constrained Hamilton’s equations

X̄qi(q, λ, p, π) =
∂H

∂pi
, (3.3.6a)

X̄pi(q, λ, p, π) = −
∂H

∂qi
−

〈

λ,
∂φ

∂qi
(q)

〉

, (3.3.6b)

φ(q) = 0, (3.3.6c)

where there is no λ equation owing to the degeneracy of ΩΠ. Note that for
nonregular H these equations will not, in general, uniquely define the vector
field X̄H̄ .

Consider now a regular Lagrangian L and its corresponding Hamiltonian
H. Observe that the augmented Lagrangian L̄ is degenerate, owing to the
lack of dependence on λ̇, and that the primary constraint manifold Π is
exactly the image of FL̄. The augmented Hamiltonian and Lagrangian sat-
isfy the equation H̄ ◦ FL̄ = EL̄, but this does not uniquely specify H̄ since
FL̄ need not be invertible. Nonetheless, it is simple to check that the con-
strained Hamilton’s equations given above are equivalent to the constrained
Euler–Lagrange equations (3.3.1) when we neglect the π component.

3.3.3. Constrained Hamiltonian systems: Dirac theory

As an alternative to working on the augmented space T ∗(Q × R
d), we can

directly compare the dynamics of the constrained system on T ∗N with those
on T ∗Q. The general form of this is the Dirac theory of constraints (Marsden
and Ratiu 1999), but here we use only the simple case of holonomic con-
straints on cotangent bundles.

The main problem with this approach is that there is no canonical way to
embed T ∗N within T ∗Q. For now we will assume that we have an embedding
η : T ∗N → T ∗Q such that πQ ◦ η = i ◦ πN and η∗Ω = ΩN , where Ω and ΩN

are the canonical two-forms on T ∗Q and T ∗N respectively, and we will see
below how to construct η given a regular Hamiltonian or Lagrangian.

Given a Hamiltonian H : T ∗Q → R, we define HN : T ∗N → R by HN =
H ◦ η. The constrained Hamiltonian vector field XHN : T ∗N → T (T ∗N) is
then defined by

iX
HN

ΩN = dHN .

Taking πΩ : T (T ∗Q) → T (T ∗N) to be the projection operator determined
by using Ω to define the orthogonal complement of Tη ·T (T ∗N) ⊂ T (T ∗Q),
leads us to the following simple relationship between the Hamiltonian vector
field XH and the constrained vector field XHN .

Theorem 3.3.3. Consider a Hamiltonian system H : T ∗Q → R and the
corresponding constrained system HN : T ∗N → R as defined above. Then

XHN = πΩ ·XH ◦ η.
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Proof. We have that η∗Ω = ΩN . Take an arbitrary V N ∈ T (T ∗N) and
compute

i(πΩ·XH◦η)Ω
N · V N = Ω(Tη · πΩ ·XH , T η · V N )

= Ω(XH , T η · V N )

= dH · Tη · V N

= dHN · V N

= iX
HN

ΩN · V N ,

where we used the fact that (Id − Tη · πΩ) ·XH is Ω-orthogonal to the set
Tη · T (T ∗N). Finally, the fact that ΩN is nondegenerate gives the desired
equivalence. �

3.3.4. Legendre transforms

Until this point we have assumed that we are using any symplectic embed-
ding η : T ∗N → T ∗Q covering the embedding i : N → Q. We now consider
a hyperregular Hamiltonian H and the corresponding hyperregular Lagran-
gian L. Recall that hyperregularity of H, for example, means that FH is
not only a local diffeomorphism (equivalent to regularity), but is a global
diffeomorphism. Of course, if we only have regularity, these constructions
may be done locally. We will show that, using this additional structure,
there is a canonical way to construct η.

To do this, begin from either a hyperregular Lagrangian L or a hyper-
regular Hamiltonian H, and construct the corresponding L or H, which is
necessarily hyperregular as well and has FL = (FH)−1. This implies that
LN and HN are also hyperregular.

We now define η : T ∗N → T ∗Q by requiring that the following diagram
commutes, where i : N → Q is the embedding as before.

TQ|N
FL �� T ∗Q|N

TN

T i

��

FLN

�� T ∗N

η

��
(3.3.7)

Clearly πQ ◦ η = i ◦ πN , and from (3.3.4) we see that η∗Ω = ΩN , and so
η gives a symplectic embedding of T ∗N in T ∗Q. Note that, although TqN
is a linear subset of TqQ, the map η is in general not linear and so T ∗

q N is
not a linear subspace of T ∗

q Q. It is true, however, that Tpq(T
∗N) is a linear

subspace of Tpq(T
∗Q).

Regarding T ∗N as a submanifold of T ∗Q by means of η, we have the
natural embedding Tη : T (T ∗N) → T (T ∗Q) and so we can regard XHN as
a vector field on η(T ∗N). Using canonical coordinates (qi, pi) on T ∗Q we



436 J. E. Marsden and M. West

can derive a simple coordinate representation of this vector field:

q̇ =
∂H

∂p
,

ṗ = −
∂H

∂q
− λT∇φ(q),

φ(q) = 0.

These equations are clearly equivalent to (3.3.6) above if we neglect the π
variable there.

Consider the projection operator πΩL
: T (TQ) → T (TN) defined by the

ΩL-orthogonal complement to T (TN) regarded as a subspace of T (TQ) by
the map TTi. As ΩL = (FL)∗Ω, elements of T (T ∗Q) which are Ω-orthogonal
pull back under FL to elements of T (TQ) which are ΩL-orthogonal. It
follows that TFLn ◦ πΩL

= πΩ ◦ TFL. In addition, observe that, as both
the constrained and unconstrained systems are regular, we obtain XL =
(FL)∗XH and XLN = (FLN )∗XHN . Combining this with the statement of
Theorem 3.3.3 and regarding TN and T ∗N as submanifolds of TQ and T ∗Q,
respectively, gives the following commutative diagram.

T (TQ)|TN
TFL ��

πΩL

��

T (T ∗Q)|T ∗N

πΩ

��

TN
FLN

(FL)|TN��

XL

������������

X
LN

����
��

��
��

��
T ∗N

X
HN

		��
��

��
��

��

XH



����������

T (TN)
TFLN

�� T (T ∗N)

(3.3.8)

This establishes that XLN = πΩL
◦XL◦Ti, which is the Lagrangian analogue

of Theorem 3.3.3. Note that this only holds for regular Lagrangians, whereas
the Hamiltonian result does not require regularity.

A special case of hyperregular systems is when we have a Riemannian
metric 〈〈·, ·〉〉 on Q and the Lagrangian is of the form

L(vq) =
1

2
〈〈vq, vq〉〉 − V ◦ πQ(vq)

for a potential function V : Q → R. Computing the Legendre transform
gives

FL(vq) · wq = 〈〈vq, wq〉〉 = vTq M(q)wq,

where we introduce the symmetric positive definite mass matrix M(q) as
the coordinate representation of the metric. In coordinates, the Legendre
transform is thus p = M(q)q̇, and we see that the Legendre transform is
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linear in q̇ and so η(T ∗
q N) is a linear subspace of T ∗

q Q at each q ∈ N . Note
that the constrained subspaces can be expressed as

TN = {(q, q̇) ∈ TQ | φ(q) = 0 and ∇φ · q̇ = 0}, (3.3.9)

η(T ∗N) = {(q, p) ∈ T ∗Q | φ(q) = 0 and ∇φ ·M−1(q)q̇ = 0}. (3.3.10)

We define the projection map P : T ∗Q|N → η(T ∗N) by P = η ◦ T ∗i, and
as it must satisfy P(∇φm) = 0 for each m = 1, . . . , d we can calculate the
coordinate expression to be

P = I − (∇φ)T [(∇φ)M−1(∇φ)T ]−1(∇φ)M−1, (3.3.11)

where I is the n×n identity matrix and ∇φ is the d×n matrix [∇φ(q)]mi =
∂φm

∂qi
, and all quantities are evaluated at q ∈ N .

Another way to derive this expression is to define an induced Riemannian
metric on T ∗Q by 〈〈pq, rq〉〉 = 〈pq,FH(rq)〉, which has coordinate expression
pTM−1(q)r. The projection P is then the projection onto the orthogonal
subspace to the span of {∇φm} in the inner product given by this metric.

In this case, note that P : TQ|N → TN , and so TP : T (TQ|N ) → T (TN).
However, observe that

T (TQ|N ) = {w ∈ T (TQ) | TπQ(w) ∈ TN},

and as XL is a second-order vector field, it satisfies TπQ ◦ XL = id, and
so we have that XL(vq) ∈ T (TQ|N ) for all vq ∈ TN . In particular, we can
now show that, on the intersection of their domains, πΩL

= TP, which gives
an explicit expression for the Lagrangian projection operator. This devel-
opment is closely related to the expression of forces of constraint in terms of
the second fundamental form (see Marsden and Ratiu (1999), Section 8.4).

3.3.5. Conservation properties

As we have seen above, the constrained systems on TN and T ∗N defined
by LN = L ◦ Ti and HN = H ◦ η, respectively, are standard Lagrangian or
Hamiltonian systems and so have the usual conservation properties.

In particular, the constrained Lagrangian system LN : TN → R will have
a flow map that preserves the symplectic two-form ΩLN = (Ti)∗ΩL, and the
constrained Hamiltonian system HN : T ∗N → R preserves the canonical
two-form ΩN = η∗Ω on T ∗N . For (hyper)regular systems, the Lagrangian
and Hamiltonian two-forms are related by the Legendre transforms on both
the constrained and unconstrained levels, so that ΩL = (FL)∗Ω and ΩLN =
(FLN )∗ΩN .

Suppose that we have a group action Φ : G × Q → Q that leaves N
invariant, that is, there is a restricted action ΦN : G × N → N satisfying
i ◦ ΦN = Φ ◦ i. It is now a simple matter to check that the infinitesimal
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generators are related by

ξQ ◦ i = Ti ◦ ξN ,

ξTQ ◦ Ti = T (Ti) ◦ ξTN ,

ξT ∗Q ◦ η = Tη ◦ ξT ∗N ,

and so the momentum maps satisfy

JLN = JL ◦ Ti,

JHN = JH ◦ η.

Since Noether’s theorem holds for both the constrained and unconstrained
systems, the above relationship shows that essentially the same momentum
map is preserved on both levels. Note that if the group action does not leave
the constraint submanifold N invariant, however, then in general it is not
possible to define JLN or JHN and there will be no constrained Noether’s
theorems.

3.4. Discrete variational mechanics with constraints

We now consider a discrete Lagrangian system Ld : Q × Q → R with the
holonomic constraint φ : Q → R

d and corresponding constraint submanifold
N = φ−1(0) ⊂ Q. As in the continuous case, the fact that N × N is
naturally a submanifold of Q × Q means that we can restrict the discrete
Lagrangian to LN

d = Ld|N×N to obtain a discrete Lagrangian system on
N ×N . More precisely, we define the embedding iN×N : N ×N → Q × Q
by iN×N (q0, q1) = (i(q0), i(q1)).

To relate the dynamics of LN
d to that of Ld, it is useful to introduce the

notation for discrete trajectories corresponding to that used in the continu-
ous case. Given times {0, h, 2h, . . . , Nh = T} and endpoints q0, qT ∈ N we
set Cd(Q) = Cd({0, h, 2h, . . . , Nh}, Q; q0, qT ) to be the set of discrete tra-
jectories qd : {0, h, 2h, . . . , Nh} → Q satisfying qd(0) = q0 and qd(Nh) = qT ,
and Cd(N) to be the corresponding set of discrete trajectories in N .

Similarly, we denote by Cd(R
d) = Cd({h, 2h, . . . , (N − 1)h},Rd) the set of

maps λd : {h, 2h, . . . , (N − 1)h} → R
d with no boundary conditions. We

will see below why we do not include the boundary points 0 and Nh. In
general, Cd(P ) is the space of maps from {0, h, 2h, . . . , Nh} to the manifold
P , and we identify such maps with their images, and write qd = {qk}

N
k=0 for

k = 0, 1, 2, . . . , N , and similarly for λd = {λk}
N
k=0.

3.4.1. Constrained discrete variational principle

As we have do not use vector fields to define the dynamics in the discrete
case, and so cannot project such objects onto the constraint manifold, we
turn instead to constraining the variational principle. The following theorem
gives the result of this procedure.
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Theorem 3.4.1. Given a discrete Lagrangian system Ld : Q×Q → R with
holonomic constraint φ : Q → R

d, set N = φ−1(0) ⊂ Q and LN
d = Ld|N×N .

Then the following are equivalent:

(1) qd = {qk}
N
k=0 ∈ Cd(N) extremizes GN

d = Gd

∣

∣

N×N
and hence solves the

discrete Euler–Lagrange equations for LN
d ;

(2) qd = {qk}
N
k=0 ∈ Cd(Q) and λd = {λk}

N−1
k=1 ∈ Cd(R

d) satisfy the con-
strained discrete Euler–Lagrange equations

D2Ld(qk−1, qk) + D1Ld(qk, qk+1) = 〈λk,∇φ(qk)〉 , (3.4.1a)

φ(qk) = 0; (3.4.1b)

(3) (qd, λd) = {(qk, λk)}
N
k=0 ∈ Cd(Q×R

d) extremizes Ḡd(qd, λd) = Gd(qd)−
〈λd,Φd(qd)〉l2 and hence solves the discrete Euler–Lagrange equations
for either of the augmented discrete Lagrangians L̄+

d , L̄
−
d : (Q × R

d) ×

(Q× R
d) → R defined by

L̄+
d (qk, λk, qk+1, λk+1) = Ld(qk, qk+1) − 〈λk+1, φ(qk+1)〉 ,

L̄−
d (qk, λk, qk+1, λk+1) = Ld(qk, qk+1) − 〈λk, φ(qk)〉 .

Proof. The proof of Theorem 3.3.2 in the continuous case can be almost
directly applied in the discrete case.

We take the full space to be Cd = Cd(Q) and the function we are extrem-
izing is the discrete action Gd : Cd(Q) → R. The constraint is specified by
setting Vd = Cd(R

d) with the l2 inner product, and defining the constraint
function Φd : Cd → Vd by Φd(qd)(kh) = φ(qd(kh)) = φ(qk). Thus qd ∈ Cd(N)
if and only if φ(qk) = 0 for all k, and hence if and only if Φd(qd) = 0. The
constraint submanifold is therefore Dd = Φ−1

d (0) = Cd(N).
As in the continuous case, statement (1) means that qd ∈ Cd(N) = Dd

is an extremum of the action for LN
d , which is the full action restricted to

Cd(N). From the Lagrange multiplier theorem (Theorem 3.3.1), qd ∈ Dd

being an extremum of Gd|Dd
is equivalent to (qd, λd) ∈ Cd × Vd being an

extremum of Ḡd(qd, λd) = Gd(qd) − 〈λd,Φd(qd)〉. Computing, this gives

Ḡd(qd, λd) = Gd(qd) − 〈λd,Φd(qd)〉

=

N−1
∑

k=0

Ld(qk, qk+1) −
N−1
∑

k=1

〈λd(kh),Φd(qd)(kh)〉 .

Extremizing this function with respect to qd now gives (3.4.1a), and extrem-
izing with respect to λd recovers (3.4.1b). We therefore have equivalence to
statement (2).

As we only extremize with respect to the internal points, and hold the
boundary terms fixed, we may extend Cd(R

d) to include λ0 and λN . We
now identify Cd × Vd = Cd(Q) × Cd(R

d) with the space Cd(Q × R
d) =
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Cd({0, h, 2h, . . . , Nh}, Q × R
d), and group the terms in the above expres-

sion for Ḡd to give two alternative functions Ḡ+
d , Ḡ

−
d : Cd(Q × R

d) → R

defined by

Ḡ+
d =

N−1
∑

k=0

[Ld(qk, qk+1) − 〈λk+1, φ(qk+1)〉] ,

Ḡ−
d =

N−1
∑

k=0

[Ld(qk, qk+1) − 〈λk, φ(qk)〉] ,

which have the same extrema as Ḡd when the boundary terms are held
fixed. Identifying the terms in the summations as the augmented discrete
Lagrangians L̄+

d and L̄−
d , respectively, gives equivalence to statement (3). �

Note that in Theorem 3.4.1 one can actually take any convex combination
of L̄+

d and L̄−
d , although this will not substantially alter the result.

We may also use the projection operator T ∗i : T ∗Q|N → T ∗N to act on
statement (2) of Theorem 3.4.1, showing that (3.4.1) is equivalent to

(T ∗i)qk [D2Ld(qk−1, qk) + D1Ld(qk, qk+1)] = 0. (3.4.2)

This is the counterpart of the continuous equation (3.3.5).

3.4.2. Augmented Hamiltonian viewpoint

Just as in the continuous case, one can either work on the augmented space
T ∗(Q× R

d) or directly on the constrained space T ∗N .
The problem with trying to form the augmented discrete Hamiltonian

maps L̄±
d is the same as in this continuous case, namely the fact that the

augmented discrete Lagrangians L̄±
d are necessarily degenerate. Nonethe-

less, we will define the discrete Hamiltonian map F̃L̄−

d
: (q0, λ0, p0, π0) �→

(q1, λ1, p1, π1) by the equations

p0 = −D1Ld(q0, q1) + 〈λ0,∇φ(q0)〉 , (3.4.3a)

π0 = φ(q0), (3.4.3b)

p1 = D2Ld(q0, q1), (3.4.3c)

π1 = 0. (3.4.3d)

Restricting to the same primary constraint set Π ⊂ T ∗(Q × R
d) as in the

continuous case, we see that these equations are the equivalent to (3.4.1)
together with the requirement φ(qk) = 0 and hence qd ∈ Cd(N), that is,
they are equivalent to statement (2) in Theorem 3.4.1.

Note that the evolution of λ is not well-defined, as in the continuous case,
so that (3.4.3) do not define a map Π → Π, that is, λ0 is not a free initial
condition, as it will be determined by (q0, p0). Note that constructing the



Discrete mechanics and variational integrators 441

alternative map F̃L̄+

d
does not give a well-defined forward map in general.

In fact, to map forward in time it is necessary to use F̃L̄−

d
as defined above,

while F̃L̄+

d
can be used to map backward in time.

3.4.3. Direct Hamiltonian viewpoint

Alternatively, one can neglect the augmented space and directly relate T ∗N
and T ∗Q. To do so, we differentiate LN

d = Ld ◦ i
N×N with respect to q0 and

q1 to obtain the discrete equivalents of (3.3.2), thus establishing that the
following diagrams commute.

T ∗Q|N

T ∗i

��

Q×Q|{q0∈N}
F
−Ld��

T ∗N N ×N

iN×N

��

F
−LN

d

��

Q×Q|{q1∈N}
F
+Ld �� T ∗Q|N

T ∗i

��
N ×N

iN×N

��

F
+LN

d

�� T ∗N

(3.4.4)

We will henceforth assume that Ld is regular, which means that LN
d is also

regular and that the discrete Hamiltonian maps F̃Ld
and F̃LN

d
are well-

defined. Combining the above diagrams with the expressions F̃Ld
= F

+Ld ◦

(F−Ld)
−1 : T ∗Q → T ∗Q and F̃LN

d
= F

+LN
d ◦ (F−LN

d )−1 : T ∗N → T ∗N gives

the following commutative diagram.

N ×N ⊂ Q×Q

F
−Ld

��		
		

		
		

		
		

		
		

	

F
+Ld

��






























T ∗Q|N
F̃Ld

��

T ∗i

��

T ∗Q|N

T ∗i

��

N ×N

iN×N

��

F
−LN

d

����
��

��
��

��
��

��
��

�

F
+LN

d

���
��

��
��

��
��

��
��

��

T ∗N
F̃LN

d

�� T ∗N

(3.4.5)

This proves the following theorem.
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Theorem 3.4.2. Consider a regular discrete Lagrangian system Ld : Q×
Q → R and the constrained system LN

d : N × N → R defined by LN
d =

Ld ◦ i
N×N . Then the discrete Hamiltonian map F̃LN

d
: T ∗N → T ∗N has the

following equivalent formulations:

(1) F̃LN
d

: (q0, p0) �→ (q1, p1) for (q0, p0), (q1, p1) ∈ T ∗N satisfying

p0 = −D1L
N
d (q0, q1), (3.4.6a)

p1 = D2L
N
d (q0, q1); (3.4.6b)

(2) F̃LN
d

: (q0, p0) �→ (q1, p1) for (q0, p0), (q1, p1) ∈ T ∗N satisfying

p0 = (T ∗i)q0(−D1Ld ◦ i
N×N (q0, q1)), (3.4.7a)

p1 = (T ∗i)q1(D2Ld ◦ i
N×N (q0, q1)); (3.4.7b)

(3) F̃LN
d

: η(T ∗N) �→ η(T ∗N) for (q0, p0) ∈ η(T ∗N) and (q1, p1) ∈ T ∗Q

satisfying

p0 = Pq0(−D1Ld ◦ i
N×N (q0, q1)), (3.4.8a)

p1 = Pq1(D2Ld ◦ i
N×N (q0, q1)), (3.4.8b)

φ(q1) = 0. (3.4.8c)

Here η : T ∗N → T ∗Q is any symplectic embedding covering the identity,
so that πQ ◦ η = i ◦ πN , and P : T ∗Q|N → η(T ∗N) is the map defined by
P = η ◦ T ∗i.

This theorem is the discrete analogue of Theorem 3.3.3, and shows how the
unconstrained Hamiltonian equations are related to the constrained equa-
tions. If we further assume that η is defined by (3.3.7) for some regular
Lagrangian L with corresponding Hamiltonian H, then we can use the fact
that the null space of P is the span of the ∇φm and introduce Lagrange
multipliers to write (3.4.8) as

p0 = −D1Ld(q0, q1) + (λ(0))T∇φ(q0), (3.4.9a)

p1 = D2Ld(q0, q1) − (λ(1))T∇φ(q1), (3.4.9b)

φ(q1) = 0, (3.4.9c)

∇φ(q1) ·
∂H

∂p
(q1, p1) = 0, (3.4.9d)

defining a map from (q0, p0) ∈ η(T ∗N) to (q1, p1) ∈ T ∗Q which will satisfy
(q1, p1) ∈ η(T ∗N). Here the arbitrary signs on the Lagrange multipliers
have been chosen to correspond to the signs for discrete forces in (3.2.5).

Now consider the special case when Q is a Riemannian manifold with met-
ric 〈〈·, ·〉〉 having coordinate representation M(q) and η is defined by (3.3.7)



Discrete mechanics and variational integrators 443

for a Lagrangian with kinetic energy given by the metric. As we have seen
in Section 3.3.4 above, η(T ∗N) and P are now given explicitly by (3.3.10)
and (3.3.11), respectively. Using this, we can write (3.4.8) as

p0 = −
(

I − (∇φ)T
[

(∇φ)M−1(∇φ)T
]−1

(∇φ)M−1
)

D1Ld(q0, q1),
(3.4.10a)

p1 =
(

I − (∇φ)T
[

(∇φ)M−1(∇φ)T
]−1

(∇φ)M−1
)

D2Ld(q0, q1),
(3.4.10b)

φ(q1) = 0, (3.4.10c)

where ∇φ and M are evaluated at q0 or q1 as appropriate.

3.4.4. Conservation properties

A constrained discrete Lagrangian system on N ×N and an unconstrained
system on Q×Q will clearly preserve the standard discrete symplectic two-
forms ΩLN

d
and ΩLd

, respectively. Now define the projections π1
Q : Q×Q →

Q and π1
N : N × N → N onto the first components of Q × Q and N × N .

Observe that π1
Q ◦ iN×N = i ◦ π1

N and, together with the left-hand diagram

in (3.4.4), a similar calculation to that preceding equation (3.3.4) will now
establish that Θ−

LN
d

= (iN×N )∗Θ−
Ld

. Using the same idea for Θ+
Ld

and taking

the exterior derivative of these expressions shows that the constrained and
unconstrained discrete one- and two-forms are related by

Θ+
LN
d

= (iN×N )∗Θ+
Ld
, Θ−

LN
d

= (iN×N )∗Θ−
Ld
, ΩLN

d
= (iN×N )∗ΩLd

.

Pushing all of these structures forward with the discrete Legendre trans-
forms shows that the constrained discrete Hamiltonian map F̃LN

d
, regarded

as acting either on T ∗N or η(T ∗N), preserves the canonical two-form ΩN ,
while F̃Ld

naturally preserves Ω.
If we further consider a symmetry action Φ : G×Q → Q which leaves N

invariant, so that it covers an action ΦN : G×N → N , then the infinitesimal
generators are related by

ξQ ◦ i = Ti ◦ ξN , (3.4.11a)

ξQ×Q ◦ iN×N = T (iN×N ) ◦ ξN×N . (3.4.11b)

Using now the above relations between the constrained and unconstrained
symplectic one-forms, we have that the momentum maps for the product
action will be related by

J+
LN
d

= J+
Ld

◦ iN×N , (3.4.12a)

J−
LN
d

= J−
Ld

◦ iN×N . (3.4.12b)

If the group action is a symmetry of the Lagrangian then these momentum
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maps are equal and Noether’s theorem holds on both the constrained and
unconstrained levels with this unique momentum map.

3.4.5. Constrained exact discrete Lagrangians

The exact discrete Lagrangian for a constrained system is not simply the
standard exact discrete Lagrangian restricted to the constraint submanifold,
as that would be the action along an unconstrained trajectory. Instead, the
constrained exact discrete Lagrangian is the action of the constrained sys-
tem, evaluated along the trajectory which lies on the constraint submanifold:
that is,

LN,E
d (q0, q1, h) =

∫ h

0
LN (q0,1(t), q̇0,1(t)) dt, (3.4.13)

where q : [0, h] → N is the solution of the Euler–Lagrange equations for
LN : TN → R which satisfies q(0) = q0 and q(h) = q1. As this discrete
Lagrangian is defined on N ×N × R, it satisfies

F
−LN,E

d (q0, q1, h)) = FLN (q0,1(0), q̇0,1(0)),

F
+LN,E

d (q0, q1, h)) = FLN (q0,1(h), q̇0,1(h)).

We would like, however, to define a function on Q×Q×R whose restriction
to N ×N × R would give LN,E

d . Without introducing additional structure,

however, there is no canonical way to do so. Indeed, let LQ,E
d : Q×Q×R → R

be any smooth extension of LN,E
d . Then from (3.3.3), (3.4.4) and the above

relations we have immediately that

(T ∗i)q0
(

F
−LQ,E

d (q0, q1, h)
)

= (T ∗i)q0
(

FL(q0,1(0), q̇0,1(0))
)

,

(T ∗i)q1
(

F
+LQ,E

d (q0, q1, h)
)

= (T ∗i)q1
(

FL(q0,1(h), q̇0,1(h))
)

,

which is a constrained version of Lemma 1.6.2. The equivalence of the
discrete and continuous systems now follows as in Section 1.6.

Note that this means that the order of accuracy of a discrete Lagrangian
constrained to N × N will not, in general, be the same as the order of
accuracy on Q×Q: that is, if Ld : Q×Q×R → R approximates the action on
Q to some particular order, then the restriction LN

d = Ld|N×N will typically
approximate the action of constrained solutions in N to some different order.
Indeed, to derive high-order discrete Lagrangians for a constrained system,
it is necessary to take account of the constraints in defining LN

d , since a
high-order Ld will typically restrict to only a first- or second-order LN

d .

3.5. Constrained variational integrators

In this section we consider implementing the integration of a mechanical
system with constraints. First we review standard geometric methods, and
then we turn to variational integrators.
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3.5.1. Constrained geometric integration

There are a number of standard approaches to the numerical integration of
constrained mechanical systems. These include working in local coordin-
ates on the constraint submanifold (for example, see Bobenko and Suris
(1999b) in the case of Lie groups, or Leimkuhler and Reich (1994)), solving
a modified system on the containing space which has the constraint sub-
manifold as a stable invariant set (for example, see Leimkuhler and Reich
(1994)), and methods based in the containing space which explicitly enforce
the constraints. Constrained mechanical systems are particular examples of
differential algebraic systems, and many of the techniques for the numerical
integration of such systems can also be applied in the mechanical setting
(see Hairer and Wanner (1996) and Ascher and Petzold (1998)).

Unless the system under consideration has a particularly simple structure,
working in local coordinates on the constraint submanifold suffers from a
number of problems, including the fact that changing charts during the
integration is not smooth, which breaks many of the nice properties of geo-
metric integrators. In addition, local coordinate computations can be very
expensive, and the equations can be very complicated, making the integ-
rator difficult to code. For all of these reasons, it is often preferable to use
integration techniques based on the containing space.

There are a number of different approaches to this, with representative
samples being Gonzalez (1999), Seiler (1999, 1998a, 1998b), McLachlan and
Scovel (1995) and Brasey and Hairer (1993). For a good overview of this
area see Hairer (200x).

3.5.2. Variational integrators for constrained systems

Here we consider a constrained discrete Lagrangian system as an integrator
for a continuous system. Given a continuous system L : TQ → R and a
constraint submanifold N ⊂ Q defined by N = φ−1(0) for some φ : Q →
R
d, we would like a discrete Lagrangian Ld : Q × Q × R → R so that

its restriction to N × N × R approximates the exact constrained discrete
Lagrangian (3.4.13). The order of this approximation is related to the order
of the resulting integrator.

Given such an Ld, we can now use any of the equivalent formulations of
the constrained Euler–Lagrange equations from Section 3.4.3 to obtain an
integrator. As in the unconstrained case, we can regard such an integrator
as defined on the product N ×N or on the corresponding cotangent bundle,
although the latter interpretation is typically simpler for implementation
purposes.

To be explicit, we will henceforth assume that the given continuous system
is regular, so that we have equivalent Lagrangian and Hamiltonian represent-
ations, and that the containing manifold Q is linear, so that it is isomorphic
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to R
n. We will use (3.4.9) to define the constrained discrete Hamiltonian

map F̃LN
d

regarded as mapping η(T ∗N) to η(T ∗N), where we recall that

η(T ∗N) is the embedding of T ∗N in T ∗Q defined by

η(T ∗N) =
{

(q, p) ∈ T ∗Q | φ(q) = 0 and ∇φ(q) ·
∂H

∂p
(q, p) = 0

}

. (3.5.1)

As we are now treating the discrete Lagrangian as the approximation to the
exact system, it will be dependent upon a time-step h and thus have the
form Ld(q0, q1, h). Given this, we may rescale the Lagrange multipliers in
(3.4.9) by h so that the constraint terms appear in the same way as discrete
forces, allowing them to be interpreted as discrete forces of constraint. This
gives

p0 = −D1Ld(q0, q1) + h(λ(0))T∇φ(q0), (3.5.2a)

p1 = D2Ld(q0, q1) − h(λ(1))T∇φ(q1), (3.5.2b)

φ(q1) = 0, (3.5.2c)

∇φ(q1) ·
∂H

∂p
(q1, p1) = 0. (3.5.2d)

To use these equations as an integrator, we must take an initial condition
(q0, p0) ∈ η(T ∗N), so that q0 and p0 satisfy the conditions given by (3.5.1).
The 2n + 2d system (3.5.2) must then be solved implicitly to find (q1, p1)
and the accompanying Lagrange multipliers. Iterating this process gives the
integrated trajectory.

Although this is generally the simplest way to implement a variational
integrator, note that if the Lagrangian has a special form, such as being
composed of kinetic and potential terms, then we could also use one of the
other equivalent expressions of the discrete Hamiltonian map given previ-
ously. Alternatively, we could also choose to work directly on N ×N and to
use (3.4.1) as an integrator mapping each pair (qk, qk+1) to (qk+1, qk+2).

Using the above theory, we recall that any such methods will always be
symplectic, and if the discrete Lagrangian inherits the symmetries of the
continuous system, then the integrator will also conserve the corresponding
momentum maps.

To implement a constrained variational integrator, it is of course necessary
to choose a particular discrete Lagrangian. We give below a number of ways
in which this can be done and we explicitly evaluate the defining equations
(3.5.2) in several cases.

3.5.3. Low-order methods

Given a low-order discrete Lagrangian, such as Lα
d given in Example 2.3.2,

one can simply restrict it to N×N to obtain an integrator for the constrained
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system. As N will generally not be convex, the points (1 − α)q0 + αq1 will
not be in N when q0 and q1 are. If the Lagrangian on N is the restriction of
a smooth Lagrangian on Q, then this will not matter for sufficiently small
stepsizes.

For a Lagrangian which is not defined off N , or which varies quickly com-
pared to the stepsize, it is important to only evaluate L and its derivatives
on N . Perhaps the simplest examples of such methods are given by L0

d and
L1
d, which give constrained versions of the symplectic Euler methods.

3.5.4. SHAKE and RATTLE

As we saw in Section 2.6.2, the Verlet algorithm is the discrete Lagrangian
map FLd

: Q×Q → Q×Q generated by the discrete Lagrangian

Ld(q0, q1, h) =
1

2
hL

(

q0,
q1 − q0

h

)

+
1

2
hL

(

q1,
q1 − q0

h

)

, (3.5.3)

where we assume that the continuous system has the form L(q, q̇)= 1
2 q̇

TMq̇−
V (q). To form a constrained version of this method, we can simply restrict
Ld to N×N and calculate the constrained discrete Euler–Lagrange equations
(3.4.1). These give

M

(

qk+1 − 2qk + qk−1

h

)

+ h∇V (qk) + (λk)
T∇φ(qk) = 0,

φ(qk+1) = 0,

which is known as the SHAKE algorithm. This was first proposed by Ryck-
aert, Ciccotti and Berendsen (1977) as a constrained version of Verlet.

A constrained version of the velocity Verlet integrator, RATTLE, was
given by Anderson (1983). This was later shown by Leimkuhler and Skeel
(1994) to be a symplectic integrator on T ∗N . In fact, RATTLE is simply
the constrained discrete Hamiltonian map F̃LN

d
: T ∗N → T ∗N associated

to the discrete Lagrangian (3.5.3). To see this, we calculate the coordinate
expressions of (3.5.2) with L(q, q̇) = 1

2 q̇
TMq̇ − V (q) to give

pk = M

(

qk+1 − qk
h

)

+
1

2
h∇V (qk) + (λ

(0)
k )T∇φ(qk),

pk+1 = M

(

qk+1 − qk
h

)

−
1

2
h∇V (qk+1) + (λ

(1)
k )T∇φ(qk+1),

0 = φ(qk+1),

0 = ∇φ(qk+1)M
−1pk+1.

Now we subtract the first equation from the second and solve the first equa-
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tion for qk+1 to obtain

qk+1 = qk + hM−1pk +
1

2
h2M−1(−∇V (qk)) +

1

2
h2M−1(λ

(0)
k )T∇φ(qk),

pk+1 = pk + h

(

−∇V (qk) −∇V (qk+1)

2

)

+ h

(

(λ
(0)
k )T∇φ(qk) + (λ

(1)
k )T∇φ(qk+1)

2

)

,

0 = φ(qk+1),

0 = ∇φ(qk+1)M
−1pk+1,

where we are assuming

(∇φ)ij(q) =
∂φi

∂qj

and where we have scaled λ
(0)
k and λ

(1)
k by −1

2 . This is exactly the RATTLE

method.
This integrator is also the 2-stage member of the Lobatto IIIA–IIIB family

(Jay 1996, 1999), which is discussed further below.
To summarize, the integrators known as Verlet, velocity Verlet, SHAKE

and RATTLE are all derived from the discrete Lagrangian (3.5.3). Verlet
is the discrete Lagrangian map FLd

: Q×Q → Q×Q, velocity Verlet is the

discrete Hamiltonian map F̃Ld
: T ∗Q → T ∗Q, SHAKE is the constrained

discrete Lagrangian map FLN
d

: N × N → N × N , and RATTLE is the

constrained discrete Hamiltonian map F̃LN
d

: T ∗N → T ∗N .

Thus, the variational formulation shows the natural connection between
these methods, and proves in a unified way that they all conserve both the
symplectic structure and quadratic momentum maps, as linear symmetries
of V will be inherited by Ld.

3.5.5. Composition methods

To construct high-order integrators for a constrained system, a simple low-
order constraint-preserving method can be used in a composition rule, as in
Section 2.5 (Reich 1996). This approach has the advantage that the resulting
method will inherit properties such as symplecticity from the base method,
and will necessarily preserve the constraint.

Composing discrete Lagrangians extends directly to constrained systems.
Given discrete Lagrangians Li

d and time-step fractions γi for i = 1, . . . , s,
we can use any of the three interpretations of the composition Ld from
Section 2.5. For the multiple steps method or the single step, multiple
substeps method, the correct constraint to impose is that all the points qik lie
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on the constraint submanifold. This implies that the single step constrained
composition discrete Lagrangian should be defined as

Ld(qk, qk+1, h) = ext
qi
k
∈N

Ld(qk, q
i
k, qk+1, h),

which denotes the extreme value of the multipoint discrete Lagrangian over
the set of interior points in the constraint submanifold N . The constrained
discrete Hamiltonian map for this Ld will then be the composition of the
constrained discrete Hamiltonian maps of the component Li

d.
When composing non-self-adjoint methods, it is common to use a sequence

including both the methods themselves and their adjoints. For this reason,
it is worth noting that the adjoint of a constrained discrete Lagrangian is
equal to the constrained version of the adjoint, that is, (L∗

d)
N = (LN

d )∗. Fur-
thermore, the associated constrained discrete Hamiltonian maps are adjoint
as integrators.

3.5.6. Constrained symplectic partitioned Runge–Kutta methods

For a Hamiltonian system H : T ∗Q → R with holonomic constraint φ : Q →
R
d, a constrained partitioned Runge–Kutta method is a map T ∗N → T ∗N

specified by (q0, p0) �→ (q1, p1) where

q1 = q0 + h
s

∑

j=1

bjQ̇j , p1 = p0 + h
s

∑

j=1

b̃jṖj , (3.5.4a)

Qi = q0 + h
s

∑

j=1

aijQ̇j , Pi = p0 + h
s

∑

j=1

ãijṖj , i = 1, . . . , s,

(3.5.4b)

Q̇i =
∂H

∂p
(Qi, Pi), Ṗi = −

∂H

∂q
(Qi, Pi) − ΛT

i ∇φ(Qi), i = 1, . . . , s,

(3.5.4c)

0 = φ(Qi), 0 = ∇φ(q1) ·
∂H

∂p
(q1, p1), i = 1, . . . , s.

(3.5.4d)

In addition, it is necessary to place some restrictions on the coefficients to
ensure that these equations do in fact define a map on T ∗N . We begin by
imposing the requirement (2.6.7) of symplecticity to give

biãij + b̃jaji = bib̃j , i, j = 1, . . . , s,

bi = b̃i, i = 1, . . . , s.

We also require that the method be stiffly accurate: that is, asi = bi for
i = 1, . . . , s. This means that q1 = Qs, and hence q1 ∈ N . Further requiring
that bi �= 0 for i = 1, . . . , s implies that ãis = 0 for each i = 1, . . . , s.
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To ensure that the system is not over-determined, we set a1i = 0 for
i = 1, . . . , s and so obtain q0 = Q1. Requiring that bi �= 0 for i = 1, . . . , s
now implies that ãi1 = b̃i for i = 1, . . . , s. Given that we start from (q0, p0) ∈
T ∗N we thus have that φ(Q1) = φ(q0) = 0 is immediately satisfied.

With these restrictions, (3.5.4) is a system of s(4n+d)+2n equations for
the same number of unknowns, defining a map η(T ∗N) → η(T ∗N). It can be
shown (Jay 1996) that this is a well-defined symplectic map on T ∗N . Such
methods are a particular example of the SPARK methods of Jay (1999),
and the subset of these methods which are explicit have been analysed for
constrained systems by Reich (1997).

To see how such constrained symplectic partitioned Runge–Kutta meth-
ods can be derived variationally, we proceed in a similar fashion to the
unconstrained case in Section 2.6.5. Given (q0, q1) ∈ Q × Q, we implicitly

define p̄0, p̄1, Q̄i, P̄i,
˙̄Qi,

˙̄Pi for i = 1, . . . , s, and Λ̄i for i = 2, . . . , (s− 1) by
the equations

q1 = q0 + h

s
∑

j=1

bj
˙̄Qj , p̄1 = p̄0 + h

s
∑

j=1

b̃j
˙̄Pj , (3.5.5a)

Q̄i = q0 + h
s

∑

j=1

aij
˙̄Qj , P̄i = p̄0 + h

s
∑

j=1

ãij
˙̄Pj , i = 1, . . . , s,

(3.5.5b)

˙̄Qi =
∂H

∂p
(Q̄i, P̄i), i = 1, . . . , s,

(3.5.5c)

˙̄Pi = −
∂H

∂q
(Q̄i, P̄i) − Λ̄T

i ∇φ(Q̄i), 0 = φ(Q̄i), i = 2, . . . , (s− 1),

(3.5.5d)

˙̄P1 = −
∂H

∂q
(Q̄1, P̄1),

˙̄Ps = −
∂H

∂q
(Q̄s, P̄s). (3.5.5e)

This is a system of 4sn+(s−2)d equations in the same number of variables
and the restrictions on the coefficients ensure that it will have a solution for
sufficiently small h.

This subset of the equations (3.5.4) was chosen from the fact that Q̄1 = q0
and Q̄s = q1, so it is necessary to relax the constraints on these two points.
Having done so, the same number of Lagrange multipliers must also then be
disregarded. Given these definitions of the various quantities in terms of q0
and q1 we define the discrete Lagrangian Ld : Q×Q× R → R by

Ld(q0, q1, h) = h
s

∑

i=1

biL(Q̄i,
˙̄Qi), (3.5.6)
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where we assume that the coefficients satisfy all of the previous require-
ments. For a given continuous system (L or H) this is not the same as
the corresponding expression (2.6.8) in the unconstrained case, as the equa-

tions defining Q̄i and ˙̄Qi have been modified here to take account of the
constraints. We now show that the constrained discrete Hamiltonian map
corresponding to (3.5.6) is indeed the constrained symplectic partitioned
Runge–Kutta method.

Theorem 3.5.1. The constrained discrete Hamiltonian map for the dis-
crete Lagrangian (3.5.6) is exactly the integrator defined by the constrained
symplectic partitioned Runge–Kutta equations (3.5.4).

Proof. Differentiating φ(Q̄i) = 0 for i = 2, . . . , s− 1 gives

∇φ(Q̄i) ·
∂Q̄i

∂q0
= 0, i = 2, . . . , s− 1,

and using this together with the definitions (3.5.5) and the same argument
as in Theorem 2.6.1 shows that

∂Ld

∂q0
= −p̄0,

∂Ld

∂q1
= p̄1.

We now consider a given initial condition (q0, p0) ∈ T ∗N and recall that the
discrete Hamiltonian map will give (q1, p1) ∈ T ∗N which satisfy (3.5.2). To
see the relation of this mapping to the symplectic partitioned Runge–Kutta
map, we make the following change of variables:

Qi = Q̄i, Pi = P̄i, i = 1, . . . , s,

Q̇i = ˙̄Qi, i = 1, . . . , s,

Λi = Λ̄i, Ṗi = ˙̄Pi, i = 2, . . . , s− 1,

b̃1Λ1 = λ(0), Ṗ1 = ˙̄P1 − ΛT
1 ∇φ(Q1),

b̃sΛs = λ(1), Ṗs = ˙̄Ps − ΛT
s ∇φ(Qs).

Recalling that the coefficients are such that Q1 = q0 and Qs = q1, we now
see that (3.5.2c) and (3.5.2d), together with the restrictions (3.5.5d) on Q̄i,
give the conditions (3.5.4d) on the non-overbar quantities.

Furthermore, (3.5.2a) and (3.5.2b) give

p̄0 = p0 − hb̃1Λ
T
1 ∇φ(Q1),

p̄1 = p1 + hb̃sΛ
T
s ∇φ(Qs).

Substituting these definitions into the equations (3.5.5) and using the fact
that ãis = 0 and ãi1 = b̃i for i = 1, . . . , s now shows that the non-overbar
quantities satisfy (3.5.4a), (3.5.4b) and (3.5.4c). We thus have that the
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discrete Hamiltonian map (q0, p0) �→ (q1, p1) on η(T ∗N) is identical to the
constrained symplectic Runge–Kutta map. �

3.5.7. Constrained Galerkin methods

With the insight gained from the definition of the constrained exact discrete
Lagrangian (3.4.13) it is simple to extend the Galerkin discrete Lagrangians
of Section 2.6.6 to include holonomic constraints.

In the particular example of polynomial trajectory approximations and
numerical quadrature, the definition (2.6.10) of the Galerkin discrete La-
grangian should be modified to

Ld(q0, q1, h) = ext
q∈Cs([0,h],Q)
φ(q(cih))=0

Gs(q), (3.5.7)

where φ : Q → R is the constraint function. This constrains the intermediate
trajectories to intersect the constraint submanifold at each quadrature point.
For such methods it is typically reasonable to require that c0 = 0 and cs = 1,
so that the endpoints q0 and q1 also satisfy the constraint.

Evaluating the constrained discrete Euler–Lagrange equations for (3.5.7)
shows that the associated discrete Hamiltonian map is a constrained sym-
plectic partitioned Runge–Kutta method, in the sense of the preceding sec-
tion and of Jay (1999). In particular, choosing the quadrature rule to be
Lobatto quadrature results in the constrained Lobatto IIIA–IIIB method of
Jay (1999).

3.6. Background: Forced and constrained systems

We now consider Lagrangian and Hamiltonian systems with both external
forcing and holonomic constraints. The formulations and equations for such
systems are straightforward combinations of the material in the preceding
sections for systems with only forces or only constraints. For this reason,
we will simply state the results without proof.

As before, we assume that we have a system on the unconstrained con-
figuration manifold Q, and a holonomic constraint function φ : Q → R

d

so that the constraint manifold is N = φ−1(0) ⊂ Q. The inclusion map
is denoted i : N → Q, and we have the natural lifts Ti : TN → TQ and
T ∗i : T ∗Q → T ∗N .

3.6.1. Lagrangian systems

Given a Lagrangian force fL : TQ → T ∗Q, we restrict it to fN
L = T ∗i ◦

fL ◦ Ti : TN → T ∗N , which is then a Lagrangian force on TN . Taking the
Lagrange–d’Alembert principle and restricting to the space of constrained
curves gives the following theorem.
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Theorem 3.6.1. Given a Lagrangian system L : TQ → R with Lagran-
gian force fL : TQ → T ∗Q and holonomic constraint φ : Q → R

d, set
N = φ−1(0) ⊂ Q, fN

L = T ∗i ◦ fL ◦ Ti, and LN = L|TN . Then the following
are equivalent:

(1) q ∈ C(N) satisfies the Lagrange–d’Alembert principle for LN and fN
L

and hence solves the forced Euler–Lagrange equations;

(2) q ∈ C(Q) and λ ∈ C(Rd) satisfy the forced constrained Euler–Lagrange
equations

∂L

∂qi
(q(t), q̇(t)) −

d

dt

(

∂L

∂q̇i
(q(t), q̇(t))

)

+ fL(q(t), q̇(t))

=

〈

λ(t),
∂φ

∂qi
(q(t))

〉

, (3.6.1a)

φ(q(t)) = 0; (3.6.1b)

(3) (q, λ) ∈ C(Q × R
d) satisfies the Lagrange–d’Alembert principle, and

hence solves the forced Euler–Lagrange equations, for L̄ : T ∗(Q×R
d) →

R and f̄L : T (Q× R
d) → T ∗(Q× R

d) defined by

L̄(q, λ, q̇, λ̇) = L(q, q̇) − 〈λ, φ(q)〉 ,

f̄L(q, λ, q̇, λ̇) = π∗
Q ◦ fL(q, q̇),

where πQ : Q× R
d → Q is the projection.

One can also project (3.6.1a) with T ∗i : T ∗Q → T ∗N to obtain a system
without λ, as in Section 3.3.

Observe that in the forced constrained Euler–Lagrange equations (3.6.1)
the forcing and Lagrange multiplier terms enter in same way. For this reason,
the Lagrange multiplier term is sometimes referred to as the forces of con-
straint , and we can regard it as being a force which is constructed exactly
so that the solution is kept on the constraint submanifold N .

3.6.2. Hamiltonian systems

Following the development of the unforced constrained case, we can move
to the Hamiltonian framework by either taking the Legendre transform of
the degenerate augmented system, or by working directly on T ∗N .

The former approach takes a Hamiltonian force fH : T ∗Q → T ∗Q and
forms the augmented Hamiltonian force f̄H : T ∗(Q× R

d) → T ∗(Q× R
d) by

f̄H(q, λ, p, π) = π∗
Q ◦ fH(q, p). The forced constrained Hamiltonian vector

field X̄H on the primary constraint set Π is defined by

iX̄H
ΩΠ = dH̄ − f̄ ′

H
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where H̄ and ΩΠ are as before, and f̄ ′
H is the horizontal one-form on T ∗(Q×

R
d) corresponding to f̄H . In coordinates this gives the forced constrained

Hamilton equations

Xqi(q, λ, p, π) =
∂H

∂pi
,

Xpi(q, λ, p, π) = −
∂H

∂qi
+ fH(q, p) −

〈

λ,
∂φ

∂qi
(q)

〉

,

φ(q) = 0.

Alternatively, we can directly relate the unconstrained Hamiltonian sys-
tem to the constrained system as in Section 3.3.3. To do this, we must choose
a symplectic embedding η : T ∗N → T ∗Q, which we will assume covers the
embedding i : N → Q. Given such a map, we now define the constrained
Hamiltonian force fN

H : T ∗N → T ∗N by fN
H = T ∗i◦fH ◦η and we let fN

H
′
be

the corresponding horizontal one-form on T ∗N . We assume that all other
structures are as in Section 3.3.3, so that the constrained Hamiltonian is
HN = H ◦ η.

The forced constrained Hamiltonian vector field XHN and the forced un-
constrained Hamiltonian vector field XH are now defined by

iX
HN

ΩN = dHN − fN
H

′
,

iXH
Ω = dH − f ′

H .

Denoting the Ω-orthogonal projection to η(T ∗N) by πΩ : T ∗Q → T ∗N , we
can show that the projection of the forced unconstrained vector field is just
the forced constrained vector field.

Theorem 3.6.2. Consider a Hamiltonian system H : T ∗Q → R with for-
cing fH : T ∗Q → T ∗Q and constraint submanifold N ⊂ Q and let the
constrained system HN : T ∗N → R and fN

H : T ∗N → T ∗N be defined as
above. Then XHN = πΩ ·XH ◦ η.

Proof. We can use essentially the same proof as for Theorem 3.3.3 in the
unforced case. The only additional requirement is to check that the one-form
fN
H

′
is the pullback under η of f ′

H , so that f ′
H(η(pq)) ·Tη ·V

N = fN
H

′
(pq) ·V

N .
To see this, we recall that η covers the identity and so πQ ◦ η = i ◦ πN .

Using the derivative of this expression we calculate

fN
H

′
(pq) · V

N =
〈

T ∗i ◦ fH ◦ η(pq), TπN · V N
〉

=
〈

fH ◦ η(pq), T i ◦ TπN · V N
〉
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=
〈

fH ◦ η(pq), TπQ ◦ Tη · V N
〉

=
(

η∗(f ′
H)

)

(pq) · V
N ,

which can then be used to modify the proof of Theorem 3.3.3, to obtain the
desired result. �

3.6.3. Legendre transforms

Given a regular Lagrangian system and the corresponding regular Hamil-
tonian system, we have seen in Section 3.3.4 that the standard Legendre
transforms provide a canonical way to construct a map η : T ∗N → T ∗Q and
so to regard T ∗N as a submanifold of T ∗Q.

Furthermore, as we saw in Section 3.1.3, the forced Lagrangian and Ham-
iltonian vector fields are related by the standard Legendre transform, so this
will hold for both the constrained and unconstrained systems. Note that our
definitions of constrained Lagrangian and Hamiltonian forces commute with
the Legendre transform, so that if fL = fH ◦FL then fN

L = fN
H ◦FLN . This

can be seen by recalling that η ◦FLN = FL ◦Ti and using the definitions of
the constrained forces.

We thus have that the constrained and unconstrained forced vector fields
on both the Lagrangian and Hamiltonian sides are related by projection and
Legendre transforms, which fully commute. In particular, we can write the
projected vector field on the Hamiltonian side in coordinates to give

q̇ =
∂H

∂p
,

ṗ = −
∂H

∂q
− λT∇φ(q) + fH(q, p),

φ(q) = 0.

In the special case when the Hamiltonian depends quadratically on p then
this projection is induced by the metric given on T ∗Q by the kinetic energy,
as in Section 3.3.4 above.

3.6.4. Conservation properties

Given a group action Φ : G×Q → Q, we have seen in Section 3.4.4 that if Φ
leaves N invariant then it can be restricted to an action ΦN on N and the
infinitesimal generators of this restricted action are related by projection to
the generators of the action on Q. This then shows that the momentum
maps of the constrained systems are just the appropriate restrictions of the
unconstrained momentum maps.

In addition, from Section 3.1.4 we know that if the Lagrangian is invariant
under the group action and the forces are orthogonal to the action, then
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Noether’s theorem will still hold. In the constrained setting, observe that
we have

〈

fN
L (vq), ξN (q)

〉

=
〈

T ∗i ◦ fL ◦ Ti(vq), ξN (q)
〉

=
〈

fL ◦ Ti(vq), T i · ξN (q)
〉

=
〈

fL ◦ Ti(vq), ξQ ◦ i(q)
〉

,

and so if fL is orthogonal to ξQ then the constrained force fN
L will also be

orthogonal to the constrained infinitesimal generator ξN . This gives us the
following Noether’s theorem.

Theorem 3.6.3. (Forced constrained Noether’s theorem) Consider
a Lagrangian system L : TQ → R with constraint submanifold N ⊂ Q,
forcing fL : TQ → T ∗Q and a symmetry action Φ : G × Q → Q such that
〈fL(q, q̇), ξQ(q)〉 = 0 for all (q, q̇) ∈ TQ and ξ ∈ g. Then the constrained
Lagrangian momentum map JLN : TN → g∗ will be preserved by the forced
constrained Lagrangian flow.

Of course, it is only necessary that the constrained force be orthogonal to
the group action on the constraint submanifold and that the reduced action
be a symmetry of the constrained Lagrangian. The above theorem simply
gives sufficient conditions for this in terms of the unconstrained quantities.

3.7. Discrete variational mechanics with forces and

constraints

We now combine the previous results for forced and constrained systems to
consider discrete Lagrangian systems with both forcing and constraints. The
definitions and results are the expected combinations of the special cases of
only forcing or only constraints, and so we will not give detailed proofs.

3.7.1. Lagrangian viewpoint

Given discrete Lagrangian forces f+
d , f−

d : Q × Q → T ∗Q, we form the

restrictions fN+
d , fN−

d : N×N → T ∗N by fN±
d = T ∗i◦f±

d ◦ iN×N , which are
then discrete Lagrangian forces on N . As in the continuous Lagrangian case,
we now take the discrete Lagrange–d’Alembert principle from Section 3.4
and constrain it to N , thus obtaining the following theorem.

Theorem 3.7.1. Given discrete Lagrangian system Ld : Q×Q → R with
discrete Lagrangian forces f+

d , f−
d : Q×Q → T ∗Q and holonomic constraint

φ : Q→R
d, set N = φ−1(0) ⊂ Q, fN±

d = T ∗i◦ f±
d ◦ iN×N, and LN

d = Ld|Q×Q.



Discrete mechanics and variational integrators 457

Then the following are equivalent:

(1) qd = {qk}
N
k=0 ∈ Cd(N) satisfies the discrete Lagrange–d’Alembert prin-

ciple for LN
d , fN+

d and fN−
d , and hence solves the forced discrete Euler–

Lagrange equations;

(2) qd = {qk}
N
k=0 ∈ Cd(Q) and λd = {λk}

N−1
k=1 ∈ Cd(R

d) satisfy the forced
constrained discrete Euler–Lagrange equations

D2Ld(qk−1, qk) + D1Ld(qk, qk+1)

+ f+
d (qk−1, qk) + f−

d (qk, qk+1) = 〈λk,∇φ(qk)〉 , (3.7.1a)

φ(qk) = 0; (3.7.1b)

(3) (qd, λd) = {(qk, λk)}
N
k=0 ∈ Cd(Q × R

d) satisfies the discrete Lagrange–
d’Alembert principle, and hence solves the forced discrete Euler–La-
grange equations, for either of L̄+

d , L̄
−
d : (Q × R

d) × (Q × R
d) → R

defined by

L̄+
d (qk, λk, qk+1, λk+1) = Ld(qk, qk+1) − 〈λk+1, φ(qk+1)〉 ,

L̄−
d (qk, λk, qk+1, λk+1) = Ld(qk, qk+1) − 〈λk, φ(qk)〉 ,

with the discrete Lagrangian forces f̄+
d , f̄−

d : (Q × R
d) × (Q × R

d) →

T ∗(Q× R
d) defined by

f̄+
d (qk, λk, qk+1, λk+1) = π∗

Q ◦ f+
d (qk, qk+1),

f̄−
d (qk, λk, qk+1, λk+1) = π∗

Q ◦ f−
d (qk, qk+1),

where πQ : Q× R
d → Q is the projection.

Using the canonical projection operator T ∗i : T ∗Q → T ∗N , we can also
write (3.7.1) without the Lagrange multipliers.

3.7.2. Discrete Hamiltonian maps

We first consider the augmented approach to constructing a discrete Ham-
iltonian map, despite the lack of regularity. The forced augmented discrete
Hamiltonian map F̃L̄−

d
: (q0, λ0, p0, π0) �→ (q1, λ1, p1, π1) is defined by the

equations

p0 = −D1Ld(q0, q1) − f−
d (q0, q1) + 〈λ0,∇φ(q0)〉 , (3.7.2a)

π0 = φ(q0), (3.7.2b)

p1 = D2Ld(q0, q1) + f+
d (q0, q1), (3.7.2c)

π1 = 0. (3.7.2d)

Restricting to the primary constraint set Π ⊂ T ∗(Q × R
d) now shows that
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these equations are equivalent to the forced constrained discrete Euler–
Lagrange equations (3.7.1) together with the constraint φ(qk) = 0. As
before, the evolution of λ is not well-defined.

Rather than considering the augmented systems, we can also directly re-
late the constrained and unconstrained systems. Here we must use the forced
discrete Legendre transforms (3.2.4), which we recall are

F
f+Ld : (q0, q1) �→ (q1, p1) = (q1, D2Ld(q0, q1) + f+

d (q0, q1)),

F
f−Ld : (q0, q1) �→ (q0, p0) = (q0,−D1Ld(q0, q1) − f−

d (q0, q1)).

These depend on both the discrete Lagrangian and discrete forces. From
(3.4.4) we have the relations

D2L
N
d = T ∗i ◦D2Ld ◦ i

N×N ,

−D1L
N
d = T ∗i ◦ (−D1Ld) ◦ i

N×N ,

and, combining these with the definitions of the constrained discrete forces
fN+
d and fN−

d , we have the following commutative diagrams, where the
discrete Legendre transforms are those which include the forcing.

T ∗Q|N

T ∗i

��

Q×Q|{q0∈N}
F
f−Ld��

T ∗N N ×N

iN×N

��

F
f−LN

d

��

Q×Q|{q1∈N}
F
f+Ld�� T ∗Q|N

T ∗i

��
N ×N

iN×N

��

F
f+LN

d

�� T ∗N

(3.7.3)

This is the equivalent of (3.4.4) in the unforced case, and using this we
now have the equivalent of diagram (3.4.5) for the forced discrete Legendre
transforms, proving the following theorem.

Theorem 3.7.2. Consider a regular discrete Lagrangian system Ld : Q×
Q → R with constraint submanifold N ⊂ Q and forcing f+

d , f−
d : Q ×Q →

T ∗Q. Then the forced constrained discrete Hamiltonian map F̃LN
d

: T ∗N →

T ∗N has the following equivalent formulations:

(1) F̃LN
d

: (q0, p0) �→ (q1, p1) for (q0, p0), (q1, p1) ∈ T ∗N satisfying

p0 = −D1L
N
d (q0, q1) − fN−

d (q0, q1), (3.7.4a)

p1 = D2L
N
d (q0, q1) + fN+

d (q0, q1); (3.7.4b)

(2) F̃LN
d

: (q0, p0) �→ (q1, p1) for (q0, p0), (q1, p1) ∈ T ∗N satisfying

p0 = (T ∗i)q0
(

(−D1Ld − f−
d ) ◦ iN×N (q0, q1)

)

, (3.7.5a)

p1 = (T ∗i)q1
(

(D2Ld + f+
d ) ◦ iN×N (q0, q1)

)

; (3.7.5b)
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(3) F̃LN
d

: η(T ∗N) �→ η(T ∗N) for (q0, p0) ∈ η(T ∗N) and (q1, p1) ∈ T ∗Q

satisfying

p0 = Pq0

(

(−D1Ld − f−
d ) ◦ iN×N (q0, q1)

)

, (3.7.6a)

p1 = Pq1

(

(D2Ld + f+
d ) ◦ iN×N (q0, q1)

)

, (3.7.6b)

φ(q1) = 0. (3.7.6c)

Here η : T ∗N → T ∗Q is any symplectic embedding covering the identity,
so that πQ ◦ η = i ◦ πN , and P : T ∗Q|N → η(T ∗N) is the map defined by
P = η ◦ T ∗i.

These equations are clearly the combination of the constrained equations
from Theorem 3.4.2 with the forced equations (3.2.5).

Now assume that η is constructed from the Legendre transforms of some
regular Lagrangian according to (3.3.7). Introducing Lagrange multipliers
allows us to rewrite (3.7.6) as

p0 = −D1Ld(q0, q1) − f−
d (q0, q1) + (λ(0))T∇φ(q0),

(3.7.7a)

p1 = D2Ld(q0, q1) + f+
d (q0, q1) − (λ(1))T∇φ(q1), (3.7.7b)

φ(q1) = 0, (3.7.7c)

∇φ(q1) ·
∂H

∂p
(q1, p1) = 0, (3.7.7d)

where (q0, p0) are in η(T ∗N). As before, we have chosen the signs on the La-
grange multipliers to correspond with the conventions of the discrete forces.

This form of the forced constrained discrete Hamiltonian map shows
clearly that one can interpret the Lagrange multiplier terms as discrete
forces of constraint . That is, the additional terms due to the constraints
enter the equations in exactly the same way as the forcing terms. Indeed,
the constraint terms can be regarded as forces which have exactly the correct
action to keep the discrete trajectory on the constraint submanifold N .

If we are working with a particular form of Lagrangian, such as one in-
volving a quadratic kinetic energy, then we can explicitly write the projection
form of the discrete Hamiltonian map as was done in Section 3.4.3.

3.7.3. Exact forced constrained discrete Lagrangian

Given a Lagrangian system with forces and constraints, we can combine the
ideas from Sections 3.2.4 and 3.4.5 to define the appropriate exact discrete
Lagrangian and exact discrete forces.

Begin by considering the constrained system LN : TN → R with con-
strained force fN

L : TN → T ∗N . Recall that the exact forced discrete
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Lagrangian LN,E
d : N × N × R is the action (3.2.7a) along a solution of

the forced Euler–Lagrange equations, and that the exact discrete forces
fN,E+
d , fN,E−

d : N ×N × R → T ∗N are the integrals of the forces (3.2.7b),
(3.2.7c) along the variations of such a solution.

Having constructed these functions on N × N × R, we take any smooth
extension to functions LQ,E

d : Q×Q×R and fQ,E+
d , fQ,E−

d : Q×Q×R → R,
as in Section 3.4.5. The same argument as used there now shows that

(T ∗i)q0
(

F
f−LQ,E

d (q0, q1, h)
)

= (T ∗i)q0
(

FL(q0,1(0), q̇0,1(0))
)

,

(T ∗i)q1
(

F
f+LQ,E

d (q0, q1, h)
)

= (T ∗i)q1
(

FL(q0,1(h), q̇0,1(h))
)

,

for all q0, q1 ∈ N and the corresponding solutions q : [0, h] → N of the forced
constrained Euler–Lagrange equations.

Using the above definitions, it is clear that to derive high-order discrete
Lagrangians and discrete forces in the presence of constraints, both the
discrete Lagrangian and the discrete forces will have to depend upon the
continuous Lagrangian, the continuous forces and also the constraints. We
will see examples of this below.

3.7.4. Noether’s theorem

Consider a group action Φ : G×Q → Q and assume that it leaves N invari-
ant, so that it restricts to ΦN : G×N → N . In the presence of forcing we saw
in Section 3.2.3 that it is necessary to use the forced Legendre transforms
to define the discrete momentum maps by (3.2.6). For the unconstrained
system this gives

Jf+
Ld

(q0, q1) · ξ =
〈

F
f+Ld(q0, q1), ξQ(q1)

〉

, (3.7.8a)

Jf−
Ld

(q0, q1) · ξ =
〈

F
f−Ld(q0, q1), ξQ(q1)

〉

, (3.7.8b)

while the constrained forced momentum maps are

Jf+

LN
d

(q0, q1) · ξ =
〈

F
f+LN

d (q0, q1), ξN (q1)
〉

, (3.7.9a)

Jf−

LN
d

(q0, q1) · ξ =
〈

F
f−LN

d (q0, q1), ξN (q1)
〉

. (3.7.9b)

Recalling that the forced discrete Legendre transforms satisfy (3.7.3), we
can use the relations (3.4.11) between the constrained and unconstrained
infinitesimal generators to show that

Jf+

LN
d

= Jf+
Ld

◦ iN×N , (3.7.10a)

Jf−

LN
d

= Jf−
Ld

◦ iN×N , (3.7.10b)

which is the forced equivalent of (3.4.12). If the group action is a symmetry
of the discrete Lagrangian then these momentum maps will be equal. In gen-
eral Noether’s theorem does not hold in the presence of forcing, except in
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the special case when the forces are orthogonal to the group action. We will
now see how this occurs in the presence of constraints.

Recall that, given discrete forces f+
d and f−

d , we can construct a one-form
fd on Q×Q by (3.2.1), which gives

fN
d (q0, q1) · (δq0, δq1) = fN+

d (q0, q1) · δq1 + fN−
d (q0, q1) · δq0,

fd(q0, q1) · (δq0, δq1) = f+
d (q0, q1) · δq1 + f−

d (q0, q1) · δq0,

and so we have the relation fN
d = T ∗(iN×N ) ◦ fd ◦ iN×N . Using this, we

compute
〈

fN
d (q0, q1), ξN×N (q0, q1)

〉

=
〈

T ∗(iN×N ) ◦ fd ◦ i
N×N (q0, q1), ξN×N (q0, q1)

〉

=
〈

fd ◦ i
N×N (q0, q1), T (iN×N ) ◦ ξN×N (q0, q1)

〉

=
〈

fd ◦ i
N×N (q0, q1), ξQ×Q ◦ iN×N (q0, q1)

〉

,

where we have used the fact that ξQ×Q ◦ iN×N = T (iN×N ) ◦ ξN×N . This
shows that if fd is orthogonal to ξQ×Q, so that 〈fd, ξQ×Q〉 = 0, then fN

d will
be orthogonal to ξN×N . We thus have a Noether’s theorem in this case.

Theorem 3.7.3. (Discrete forced constrained Noether’s theorem)
Consider a discrete Lagrangian system Ld : Q×Q → R with constraint sub-
manifold N ⊂ Q, discrete forces f+

d , f−
d : Q × Q → T ∗Q and a symmetry

action Φ : G × Q → Q such that 〈fd, ξQ×Q〉 = 0 for all ξ ∈ g. Then the

constrained Lagrangian momentum map Jf

LN
d

: N ×N → g∗ is preserved by

the forced constrained discrete Hamiltonian map.

As in the continuous case with forcing and constraints, this only provides a
sufficient condition as it is enough to just have orthogonality and invariance
on N .

3.7.5. Variational integrators with forces and constraints

Consider a Lagrangian system L : TQ → R with a constraint submanifold
N ⊂ Q specified by N = φ−1(0) for some φ : Q → R

d and a Lagrangian force
fL : TQ → T ∗Q. We would now like to construct a discrete Lagrangian Ld :
Q×Q → R and discrete forces f+

d , f−
d : Q×Q → T ∗Q which approximate

an extension of the exact discrete Lagrangian and exact forces. The discrete
Hamiltonian map will then be an integrator for the continuous system.

We will assume here that the Lagrangian is regular, so that it has an
equivalent Hamiltonian formulation, and also that Q is linear and isomorphic
to R

n. Regularity of the Lagrangian also provides a canonical embedding
η : T ∗N → T ∗Q, and we will use the Lagrange multiplier formulation (3.7.7)
of the forced constrained Hamiltonian map. As in Section 3.5.2, we will
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rescale the Lagrange multipliers by the time-step to give

p0 = −D1Ld(q0, q1) − f−
d (q0, q1) + h(λ(0))T∇φ(q0),

(3.7.11a)

p1 = D2Ld(q0, q1) + f+
d (q0, q1) − h(λ(1))T∇φ(q1),

(3.7.11b)

φ(q1) = 0, (3.7.11c)

∇φ(q1) ·
∂H

∂p
(q1, p1) = 0, (3.7.11d)

where the initial condition (q0, p0) is in η(T ∗N), and we solve over (q1, p1) ∈
T ∗Q. The last two equations ensure that the solution (q1, p1) will also lie
in η(T ∗N). Of course, we could also use one of the alternative formulations
from Theorem 3.7.2 or we could use the forced constrained discrete Euler–
Lagrange equations (3.7.1) and work directly on N ×N .

To construct discrete Lagrangians and discrete forces we can use any of
the techniques discussed previously. Here we give a few examples.

Example 3.7.4. (Low-order methods) For a low-order discrete Lagran-
gian and discrete forces, such as the Lα

d and fα,±
d from Example 3.2.2, we

can simply restrict them to N ×N , as in Section 3.5.3. This yields a simple
method that remains on the constraint manifold and includes the forcing. ♦

Example 3.7.5. (Composition methods) As we have seen in several ex-
amples already, composition methods provide a particularly elegant method
to construct high-order methods from a given low-order integrator. In the
case of systems with both forcing and constraints, the appropriate composed
discrete forces and discrete Lagrangians are given by the combination of the
definitions for the forced and constrained cases. ♦

Example 3.7.6. (Symplectic partitioned Runge–Kutta methods)
Combining the definitions of the discrete forces (3.2.8) with the constrained
formulation of the discrete Lagrangian (3.5.6), we arrive at discrete forces
and a discrete Lagrangian for which the discrete Hamiltonian map is a con-
strained symplectic partitioned Runge–Kutta method with forcing. ♦



Discrete mechanics and variational integrators 463

PART FOUR

Time-dependent mechanics

4.1. Introduction

In this part we address the issues of nonautonomous systems and discrete
energies, which are closely related. In doing so, we rederive the symplectic–
energy–momentum-conserving integrators of Kane et al. (1999a) in a purely
variational way. We stress, however, that the theory developed here has
many applications, aside from deriving such integrators. These applica-
tions include a deeper understanding of the behaviour of the symplectic–
momentum integrators discussed in previous parts, as well as apparently un-
related areas such as nonsmooth variational mechanics (Fetecau et al. 2001).

The basic methodology used here is that of variational mechanics and vari-
ational discretizations. Unlike the standard discrete variational mechanics
discussed in earlier parts of this work, however, we extend the framework
to include time variations in addition to the usual configuration variable
variations, as in Lee (1983) and (1987).

For continuous Lagrangian dynamics, these extra variations, which pro-
duce conservation of energy, do not contribute any new information to the
Euler–Lagrange equations. In the discrete setting, however, we see that we
obtain an extra equation which exactly ensures preservation of a quantity
we can identify as the discrete energy. In this way, both the definition of
the discrete energy and the fact that it is preserved arise naturally from the
variational principle.

This same approach is also used in variational multisymplectic mechanics,
where a configuration is regarded as a section of a fibre bundle over spacetime
and we distinguish between vertical (configuration) variations and horizontal
(spacetime) variations. In that theory the nature of the dual state space and
fully covariant momentum maps can be properly defined. The interested
reader is referred to Gotay, Isenberg and Marsden (1997) and Marsden,
Patrick and Shkoller (1998), as here we use only the limited subset of the
formalism which is sufficient for our purposes. To keep the exposition as
simple and direct as possible, we have had to compromise with the general
theory just a little: for example, in discussing momentum maps, one should
really use the affine dual rather than the linear dual as we do here. This
distinction becomes crucial in the multisymplectic, or PDE context.

We also investigate the links between the discrete variational mechanics
and Hamilton–Jacobi theory. In particular, we see that requiring the discrete
and continuous energies to be equal is exactly the Hamilton–Jacobi PDE,
which proves that the symplectic–energy–momentum variational integrators
will only conserve the continuous energy exactly if they also exactly integrate
the continuous flow.
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This result is clearly consistent with the well-known theorem of Ge and
Marsden (1988) and shows the advantage of identifying the correct discrete
energy. While we cannot hope to conserve the continuous energy for an
arbitrary non-integrable system, we can exactly conserve the corresponding
discrete quantity.

This is similar to the situation with the Newmark integrator, discussed
in Kane et al. (2000), where it was long thought that the integrator did not
conserve the momenta, but where the problem was simply that the wrong
discretization of the momenta was being used. Once the correct discretiz-
ation was chosen, it was seen that the algorithm was actually momentum-
conserving (and indeed symplectic).

4.2. Background: Extended Lagrangian mechanics

4.2.1. Basic definitions

Consider a configuration manifold Q and the time space R. Define the
extended configuration manifold to be Q̄ = R × Q and the corresponding
extended state space to be R × TQ. Take an extended Lagrangian L : R ×
TQ → R.

The extended path space is

C̄ = {c : [a0, af ] → Q̄ | c is a C2 curve and c′t(a) > 0},

and we denote the two components of c by c(a) = (ct(a), cq(a)). Given a
path c(a), we define the initial time t0 = ct(a0) and final time tf = ct(tf )
and we form the associated curve q : [t0, tf ] → Q by

q(t) = cq(c
−1
t (t)).

It is simple to check that two paths c1(a) and c2(a) have the same associated
curve if and only if they are reparametrizations of each other: that is, if there
exists a smooth monotone increasing isomorphism h : [a0, af ] → [a0, af ] such
that c1 ◦ h = c2.

Given an associated curve, it will be useful to define

ˆ̇q(t) =
(

t, q(t), q̇(t)
)

∈ R × TQ,

ˆ̈q(t) =
((

t, q(t), q̇(t)
)

,
(

1, q̇(t), q̈(t)
))

∈ T (R × TQ).

Now define the extended action map Ḡ : C̄ → R to be

Ḡ(c) =

∫ tf

t0

L(ˆ̇t) dt, (4.2.1)

where q(t) is the associated curve to c(a) and t0 and tf are the initial and
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final times, respectively, for c. Differentiating q(t) = cq(c
−1
t (t)) gives

q̇(t) =
c′q(c

−1
t (t))

c′t(c
−1
t (t))

, (4.2.2)

where q̇ denotes the derivative with respect to t and c′ denotes the derivative
with respect to a. With this, Ḡ can be written as

Ḡ(c) =

∫ af

a0

L

(

ct(a), cq(a),
c′q(a)

c′t(a)

)

c′t(a) da. (4.2.3)

The tangent space TcC̄ to the extended path space C̄ at the path c is
the set of all C2 maps δc : [a0, af ] → TQ̄ such that πQ̄ ◦ δc = c, where

πQ̄ : TQ̄ → Q̄ is the canonical projection map.
Define the extended second-order submanifold of T (R × TQ) to be

¯̈Q = {w ∈ T (R × TQ) | TπQ(w) = πTQ(w)} ⊂ T (R × TQ), (4.2.4)

where πQ : R × TQ → Q and πTQ : T (R × TQ) → TQ are the canonical

projections. ¯̈Q is the set of points of the form ((t, q, q′), (t′, q′, q′′)), where
the third and fifth entries are equal.

4.2.2. Variations of the action

Now that we have defined the spaces we are working on and have formed
the action function, we are ready to derive the Euler–Lagrange equations of
motion and prove a number of facts about solutions of these equations. The
basic methodology here is variational, that is, we derive the equations and
symplectic forms from taking variations of the action with respect to the
path. To begin this process, we state the following fundamental theorem.

Theorem 4.2.1. Given a Ck extended Lagrangian L : R × TQ → R,

k ≥ 2, there exists a unique Ck−2 mapping D̄ELL : ¯̈Q → T ∗Q̄ and a unique
Ck−1 one-form Θ̄L on the extended state space R × TQ, such that for all
variations δc ∈ TcC̄ of c ∈ C̄ we have

dḠ(c) · δc =

∫ tf

t0

D̄ELL(ˆ̈q) · δc dt + Θ̄L(ˆ̇q) · δ̂c
∣

∣

∣

tf

t0
, (4.2.5)

where

δ̂c(a) =
∂

∂ǫ

∣

∣

∣

∣

ǫ=0

(

cǫt(a), c
ǫ
q(a),

(cǫq)
′(a)

(cǫt)
′(a)

)

,

and cǫ(a) is such that δc(a) = ∂
∂ǫ

∣

∣

ǫ=0
cǫ(a) and q(t) is the associated curve

to c(a).
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The one-form Θ̄L is called the extended Lagrangian one-form and the
mapping D̄ELL is called the extended Euler–Lagrange map. In coordinates
they have the form

D̄ELL(c′′) =

[

∂L

∂qi
−

d

dt

(

∂L

∂q̇i

)]

dciq +

[

∂L

∂t
+

d

dt

(

∂L

∂q̇i
q̇i − L

)]

dct,

(4.2.6)

Θ̄L(c′) =

[

∂L

∂q̇i

]

dciq −

[

∂L

∂q̇i
q̇i − L

]

dct (4.2.7)

where the various quantities are evaluated at either t or a = c−1
t (t) as ap-

propriate.

Proof. Take the derivative of equation (4.2.3) in the direction δc to obtain

dḠ(c) · δc =

∫ af

a0

[

∂L

∂t
δct +

∂L

∂q
δcq +

∂L

∂q̇

(

δc′q
c′t

−
c′qδc

′
t

(c′t)
2

)]

c′t da

+

∫ af

a0

Lδc′t da

=

∫ af

a0

[

∂L

∂q
c′t −

d

da

∂L

∂q̇

]

δcq da

+

∫ af

a0

[

∂L

∂t
c′t +

d

da

(

∂L

∂q̇

c′q
c′t

− L

)]

δct da

+

[

∂L

∂q̇
δcq

]af

a0

+

[

−

(

∂L

∂q̇

c′q
c′t

− L

)

δct

]af

a0

,

where integration by parts has been used on the δc′q and δc′t terms.
Now change coordinates so that the integrals are taken with respect to

t rather than a. In doing this, use the facts that dt = c′t(a) da and d
da =

c′t(a)
d
dt . This gives the desired expression (4.2.5) with the Euler–Lagrange

derivative (4.2.6) and the Lagrangian one-form (4.2.7). �

The fact that the extended Euler–Lagrange operator and extended La-
grangian one-form are functions only of the associated curve q(t) and not
of the full path c(a) is a reflection of the fact that the extended action Ḡ is
itself only a function of q(t). This will be very important in what follows.

4.2.3. Euler–Lagrange equations

Hamilton’s principle of critical action now seeks those paths c ∈ C̄ which
are critical points of the action. More precisely, define the space of solutions
C̄L ⊂ C̄ to be all those paths c that satisfy dḠ(c) · δc = 0 for all variations
δc ∈ TcC̄ which are zero at the boundary points a0 and af .
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Using equation (4.2.5) it is clear that c is a solution if and only if the
extended Euler–Lagrange map (4.2.6) is zero on the associated curve to c
for all t ∈ (t0, tf ). For any time t this statement is

D̄ELL(ˆ̈q) = 0 (4.2.8)

and is called the extended Euler–Lagrange equations.
The fact that the extended Euler–Lagrange map depends only on the as-

sociated curve, and not on the path c itself, means that any other paths
which have the same associated curve will be solutions if and only if c is a
solution. As remarked earlier, this is equivalent to the paths being repara-
metrizations of each other. We can thus group the solution space C̄L into
equivalence classes of paths, each of which correspond to a single associated
curve that satisfies the extended Euler–Lagrange equations. We will use this
identification later when deriving an extended Lagrangian vector field and
flow map, and in proving the conservation properties of these structures.

Of course, for an arbitrary Lagrangian the extended Euler–Lagrange equa-
tions will not necessarily uniquely define the associated curve, either. For
the remainder of this section, however, we will assume that L is chosen
such that q(t) is uniquely determined, and in Section 4.4.4 we will consider
conditions under which this is true.

Considering the expression of the extended Euler–Lagrange equations in
more detail, we can break it up into the two components to give

∂L

∂qi
−

d

dt

(

∂L

∂q̇i

)

= 0, (4.2.9a)

∂L

∂t
+

d

dt

(

∂L

∂q̇i
q̇i − L

)

= 0. (4.2.9b)

In fact, only the first component of the Euler–Lagrange equations (4.2.9)
is necessary, as it implies the second. To see this, consider an associated
curve q satisfying (4.2.9a) for all t ∈ (t0, tf ). We now compute the second
component (4.2.9b) of the Euler–Lagrange equations to be

∂L

∂t
+

d

dt

(

∂L

∂q̇i
q̇i − L

)

=
∂L

∂t
+

d

dt

(

∂L

∂q̇i

)

q̇i +
∂L

∂q̇i
q̈i −

dL

dt

=

[

∂L

∂t
+

∂L

∂qi
q̇i +

∂L

∂q̇i
q̈i
]

−
dL

dt

= 0,

where we used (4.2.9a) to pass from the first to the second line. The space
of solutions C̄L is thus the space of paths whose associated curves satisfy
(4.2.9a) for all t.

This redundancy in the equations is a reflection of the fact that they
only depend on the associated curve, and so the equations cannot determine
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the map ct(a). There must therefore be some functional dependency in the
system, as is explicitly shown above.

The second part of the extended Euler–Lagrange equation (4.2.9) is actu-
ally the statement of energy evolution for an extended Lagrangian system.
The energy EL : R × TQ → R is defined to be

EL(t, q, q̇) =
∂L

∂q̇
(t, q, q̇) · q̇ − L(t, q, q̇) (4.2.10)

and is constant along solutions if L does not explicitly depend on time.
This is clear from the fact that the second part (4.2.9b) of the extended
Euler–Lagrange equations can be written as

∂L

∂t
+

dEL

dt
= 0.

Another reason that only the first part (4.2.9a) of the extended Euler–
Lagrange equations is needed is that it already has the energy evolution built
into it, making the second part redundant. If it did not, then the second part
would ensure energy conservation (for L time-independent) or the correct
energy change (for L time-varying). This will be especially important when
we consider discrete Lagrangian systems.

Note that the definition of the energy function (4.2.10) also allows us to
write the extended Lagrangian one-form in the compact notation

Θ̄L =
∂L

∂q̇
dq − ELdt, (4.2.11)

where we use (q, t) to refer to the two components of c. This expression for
Θ̄L will be useful when we consider the corresponding discrete object.

4.2.4. Lagrangian vector fields and flow maps

As we have already seen, the solution paths are only uniquely defined up to
reparametrizations in a. Equivalently, this means that only the associated
curve is uniquely defined by the extended Euler–Lagrange equations. For
this reason, there is no unique vector field on TQ̄ for which solution paths
are integral curves, but there is a unique vector field on R × TQ for which
the associated curves are integral curves, assuming that the time evolution
is fixed as the identity.

More precisely, define extended Lagrangian vector field X̄L : R × TQ →
T (R × TQ) to be the unique second-order vector field satisfying

D̄ELL ◦ X̄L = 0,

TπR ◦ X̄L(t, q, q̇) = (t, 1),

where πR : R × TQ → R is the projection.
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The extended Lagrangian flow F̄L : R × (R × TQ) → R × TQ is the flow
map of X̄L, and we write F̄ h

L : R × TQ → R × TQ for some fixed time h.

4.2.5. Conservation of the extended symplectic form

Using the definition of F̄L, it is clear that setting q(t) = πQ ◦ F̄ t−t0
L (t0, q0, q̇0)

for some initial condition (t0, q0, q̇0) ∈ R × TQ means that q(t) will satisfy
the extended Euler–Lagrange equations and will thus be an element of C̄L.
Also, given any q(t) ∈ C̄L, it will satisfy q(t) = πQ ◦ F̄ t−t0

L (t0, q(t0), q̇(t0).
Choosing an elapsed time h ∈ R, we may thus define the restricted exten-

ded action map
¯̂
G : R × TQ → R to be

¯̂
Gh(t0, q0, q̇0) = Ḡ(c),

where c ∈ CL(Q) is any solution satisfying
(

ct(a0), cq(a0),
c′q(a0)

c′t(a0)

)

= (t0, q0, q̇0),

ct(af ) = t0 + h.

We now wish to calculate the derivative of this expression. Begin by con-
sidering a variation derived from a family of initial conditions by

(

(t0, q0, q̇0), (δt0, δq0, δq̇0)
)

=
∂

∂ǫ

∣

∣

∣

∣

ǫ=0

(tǫ0, q
ǫ
0, q̇

ǫ
0) ∈ T (R × TQ),

and let cǫ ∈ C̄L be a corresponding family of solutions satisfying
(

cǫt(a0), c
ǫ
q(a0),

(cǫq)
′(a0)

(cǫt)
′(a0)

)

= (tǫ0, q
ǫ
0, q̇

ǫ
0),

cǫt(af ) = tǫ0 + h.

Observe that we thus have

F̄
t−tǫ0
L (tǫ0, q

ǫ
0, q̇

ǫ
0) =

(

cǫt(a), c
ǫ
q(a),

(cǫq)
′(a)

(cǫt)
′(a)

)

, a = (cǫt)
−1(t),

and so

δ̂c(a0) =
∂

∂ǫ

∣

∣

∣

∣

ǫ=0

F̄ 0
L(tǫ0, q

ǫ
0, q̇

ǫ
0) = (δt0, δq0, δq̇0),

δ̂c(af ) =
∂

∂ǫ

∣

∣

∣

∣

ǫ=0

F̄ h
L(tǫ0, q

ǫ
0, q̇

ǫ
0) = T F̄ h

L(t0, q0, q̇0) · (δt0, δq0, δq̇0).

To calculate d
¯̂
G we now use equation (4.2.5) for the derivative of the exten-

ded action together with the above expressions for the variations and the
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fact that the extended Euler–Lagrange map is zero on solutions to give

d
¯̂
Gh(t0, q0, q̇0) · (δt0, δq0, δq̇0) = Θ̄L

(

F̄ h
L(t0, q0, q̇0)

)

· T F̄ h
L · (δt0, δq0, δq̇0)

− Θ̄L(t0, q0, q̇0) · (δt0, δq0, δq̇0),

which implies that

d
¯̂
Gh = (F̄ h

L)∗Θ̄L − Θ̄L. (4.2.12)

Taking a further derivative of (4.2.12), and using the fact that d2 = 0, now
gives conservation of the extended symplectic structure

(F h
L)∗ΩL = ΩL,

where ΩL = −dΘL is the extended Lagrangian symplectic form on R × TQ.

4.2.6. Conservation of momentum maps

Consider a Lie group G which acts on Q̄ by the (left or right) action ΦQ̄ :
G × Q̄ → Q̄ in such a way that it covers an action Φt : G × R → R, which
is assumed to be monotone (∂tΦ

t(t) �= 0). In coordinates this is

ΦQ̄
g (t, q) =

(

Φt(t),Φq(t, q)
)

.

The tangent lift of this action to ΦTQ̄ : G× TQ̄ → TQ̄ is defined by ΦTQ̄
g =

TΦg, and the lift to the extended state space ΦR×TQ : G × (R × TQ) →
R × TQ is defined by

ΦR×TQ
g (t, q, q̇) =

(

Φt
g(t),Φ

q
g(t, q),

∂tΦ
q
g(t, q) + ∂qΦ

q
g(t, q) · q̇

∂tΦt
g(t)

)

.

This is defined so that, if a path c(a) is transformed by the pointwise action

of ΦTQ̄
g , then the associated curve and its first derivative will transform

pointwise with ΦR×TQ
g .

The infinitesimal generators corresponding to these actions are ξQ̄ : Q̄ →

T (Q̄), ξTQ̄ : TQ̄ → T (TQ̄) and ξR×TQ : R × TQ → T (R × TQ), given by

ξQ̄(t, q) =
d

dg

(

ΦQ̄
g (t, q)

)

· ξ,

ξTQ̄(t, q, δt, δq) =
d

dg

(

ΦTQ̄
g (t, q, δt, δq)

)

· ξ,

ξR×TQ(t, q, q̇) =
d

dg

(

ΦR×TQ
g (t, q, q̇)

)

· ξ.

The extended Lagrangian momentum map J̄L : R×TQ → g∗ is now defined by

J̄L(t, q, q̇) · ξ = Θ̄L · ξR×TQ(t, q, q̇).



Discrete mechanics and variational integrators 471

Denoting the two components of ξQ̄ by ξQ̄(t, q) = (ξt
Q̄
(t, q), ξq

Q̄
(t, q)), it can

be checked that an equivalent expression for J̄L is

J̄L(t, q, q̇) · ξ =

〈

∂L

∂q̇
, ξq

Q̄
(t, q)

〉

− EL(t, q, q̇)ξtQ̄(t, q),

which is useful in applications as it does not involve the lifted action.

If ΦQ̄ acts by extended special symplectic maps, so that (ΦQ̄
g )∗Θ̄L = ΘL,

then it can be proved that the lifted action on the extended state space is
equivariant, so that J̄L◦ΦR×TQ

g = Ad∗
g−1 ◦J̄L. The proof of this is essentially

identical to that of Theorem 1.2.2.
In the autonomous setting, invariance of the Lagrangian implies invariance

of the action. As the action is an integral with respect to time, however, and
extended group actions can reparametrize time, this is no longer sufficient.
Instead, we say that the group action is a symmetry if the one-form Ldt is
preserved, so that

(ΦR×TQ
g )∗(Ldt) = Ldt.

In fact, this same condition ensures that the group action is by extended
special symplectic maps, and hence the momentum maps are equivariant.
To see this, we differentiate the above expression with respect to q̇ in the
direction δq to obtain

∂L

∂q̇
◦ ΦR×TQ

g · ∂qΦ
q
g · δq =

∂L

∂q̇
· δq,

and substituting this into the expression for (ΦR×TQ
g )∗(Θ̄L)(t, q, q̇)·(δt, δq, δq̇)

we can rearrange to obtain Θ̄L · (δt, δq, δq̇).
Note that in the language of multisymplectic mechanics we have required

that the Lagrangian density be invariant, and the extended Lagrangian mo-
mentum map defined above is the fully covariant Lagrangian momentum
map. See Gotay et al. (1997) for more details.

Theorem 4.2.2. (Extended Noether’s theorem) Consider an exten-
ded Lagrangian system L : R × TQ → R with a (left or right) symmetry
action Φ : G × Q̄ → Q̄. Then the corresponding (left or right) extended
Lagrangian momentum map J̄L : R × TQ → g∗ is a conserved quantity of
the flow, so that J̄L ◦ F̄ h

L = J̄L for all elapsed times h.

Proof. First define the lifted action on paths ΦC̄ : G×C̄ → C̄ by ΦC̄
g (c)(a) =

ΦTQ̄
g (c(a)). If two paths c1 and c2 have the same associated curve q, then

the transformed paths c̄1 = ΦC̄
g (c1) and c̄2 = ΦC̄

g (c2) will also map to a single
associated curve q̄. We can thus define the lifted action of G on the set of
associated curves by

ΦC̄
g (q) = ΦR×TQ

g ◦ q ◦ (Φt
g)

−1,
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so that if q is the associated curve to c, then ΦC̄
g (q) is the associated curve

to ΦC̄
g (c). The infinitesimal generators corresponding to the action on the

space of paths is ξC̄ : C̄ → T C̄ defined by

ξC̄(c) =
d

dg

(

ΦC̄
g (c)

)

· ξ.

If the one-form Ldt is invariant, then taking an integral of this along an
associated curve shows that the action Ḡ : C̄ → R is also invariant, which is
Ḡ ◦ ΦC̄

g = Ḡ.
We thus have that solution curves map to solution curves and so ξC̄(c) ∈

TcC̄. Restricting the infinitesimal invariance of the action to the space of
solutions gives

0 = dḠ(c) · ξC̄(c) = Θ̄L(ˆ̇q) · δ̂c
∣

∣

∣

tf

t0
,

where

δ̂c(a) =
d

dg

(

Φt
g(ct(a)),Φ

q
g(ct(a), cq(a)),

∂aΦ
q
g(ct(a), cq(a))

∂aΦt
g(ct(a))

)

· ξ

=
d

dg
ΦR×TQ
g (ˆ̇q(t)) · ξ where t = ct(a)

= ξR×TQ(ˆ̇q(t)).

Recall now that, for an initial condition (t0, q0, q̇0) with corresponding solu-
tion q(t), we have ˆ̇q(t0) = (t0, q0, q̇0) and ˆ̇q(tf ) = F̄ h

L(t0, q0, q̇0). Combining
this with the above expressions now gives

0 = Θ̄L

(

F̄ h
L(t0, q0, q̇0)

)

· ξR×TQ

(

F̄ h
L(t0, q0, q̇0)

)

− Θ̄L(t0, q0, q̇0) · ξR×TQ(t0, q0, q̇0)

which is exactly the statement J̄L ◦ F̄ h
L = J̄L. �

An interesting example of an extended momentum map arises for the
time translation action of R on Q̄. The corresponding momentum map is
J̄L(t, q, q̇) = −EL(t, q, q̇)dξ and if the Lagrangian is time-independent then
Noether’s theorem recovers the statement of energy conservation.

4.3. Discrete variational mechanics: Lagrangian viewpoint

We now turn to constructing a discrete time-dependent Lagrangian mechan-
ics. As in the continuous case, the basic idea is to use a variational principle
to derive the equations of motion, which then automatically guarantees con-
servation of discrete symplectic forms and discrete momentum maps.

The difference from standard discrete variational mechanics is that we
work here with time-varying systems and take variations with respect to
time, and not only with respect to the configuration variables. This gives
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us two components to the discrete Euler–Lagrange equations, the second
of which ensures the preservation of a discrete energy. This is different
to the continuous case, where the first component of the Euler–Lagrange
equations implies the second. In the discrete setting, both are independent
and necessary.

4.3.1. Basic definitions

Consider once again a configuration manifold Q, time space R and extended
configuration manifold Q̄ = R×Q. Define the extended discrete Lagrangian
state space to be Q̄ × Q̄ and take an extended discrete Lagrangian Ld :
Q̄× Q̄ → R.

The extended discrete path space is

C̄d = {c : {0, . . . , N} → Q̄ | ct(k + 1) > ct(k) for all k},

and as before we denote the two components of c by c(k) = (ct(k), cq(k)).
Given a discrete path c, we form the associated discrete curve

q : {ct(0), . . . , ct(N)} → Q

by
q(ct(k)) = cq(k),

and we denote the images of the time component of c by tk = ct(k) and
the images of the configuration component by qk = q(ct(k)) = cq(k). An
extended discrete path is thus a sequence {(tk, qk)}

N
k=0 of points (tk, qk) ∈ Q̄.

Observe that, unlike the autonomous situation, the extended discrete La-
grangian state space Q̄ × Q̄ = R × Q × R × Q is not locally isomorphic to
the extended Lagrangian state space R×TQ, as it has one extra dimension.
Regarding a discrete Lagrangian system as an integrator, this is a reflection
of the fact that nonautonomous discrete Lagrangian systems require adapt-
ive time-stepping, which implies that it is necessary to keep track of both
the current time and the current time-step.

In the case when the system being modelled is indeed autonomous, one
could take the discrete system to be Q×R×Q, with each element (q0, h, q1)
consisting of two points q0 and q1 and a time-step h. As we will see
later, however, this is not essentially different from the more general case of
(t0, q0, t1, q1), and so we will only consider this more general formulation.

The extended discrete action sum Ḡd : Cd → R is given by

Ḡd(c) =
N−1
∑

k=0

Ld(c(k), c(k + 1)), (4.3.1a)

Ḡd(c) =
N−1
∑

k=0

Ld(tk, qk, tk+1, qk+1). (4.3.1b)
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Equation (4.3.1a) is the discrete equivalent of (4.2.3) and equation (4.3.1b)
is the equivalent of (4.2.1).

The tangent space TcC̄d to the discrete path space C̄d at the path c is the
set of all maps δc : {0, . . . , N} → TQ̄ such that πQ̄ ◦ δc = c.

Consider the space (Q̄× Q̄)× (Q̄× Q̄) and define the extended projection
operator π and the extended translation operator σ by

π : ((c0, c1), (c
′
0, c

′
1)) �→ (c0, c1),

σ : ((c0, c1), (c
′
0, c

′
1)) �→ (c′0, c

′
1).

We define the extended discrete second-order submanifold of (Q̄×Q̄)×(Q̄×Q̄)
to be

¯̈Qd = {wd ∈ (Q̄× Q̄) × (Q̄× Q̄) | π1 ◦ σ(wd) = π2 ◦ π(wd)},

where π1, π2 : Q̄× Q̄ → Q̄ are the projections onto the first and second com-

ponents, respectively. ¯̈Qd is thus the set of points of the form ((t0, q0, t1, q1),
(t1, q1, t2, q2)), with the second and third values in Q̄ being equal.

In contrast to the autonomous case, the extended discrete second-order

submanifold ¯̈Qd is not isomorphic to the extended continuous second-order

submanifold ¯̈Q. This will be reflected in the choice of initial conditions for
a solution curve, as we will see below.

4.3.2. Variations of the discrete action

As in the continuous case, the discrete equations of motion and conservation
laws are derived from a stationarity principle: that is, we take variations of
the discrete action sum with respect to the discrete path, as stated in the
following theorem.

Theorem 4.3.1. Given a Ck extended discrete Lagrangian Ld : Q̄× Q̄ →

R, k ≥ 1, there exists a unique Ck−1 mapping D̄DELLd : ¯̈Qd → T ∗Q̄ and
unique Ck−1 one-forms Θ̄−

Ld
and Θ̄+

Ld
on the discrete Lagrangian state space

Q̄× Q̄, such that, for all variations δc ∈ TcC̄d of c ∈ C̄d, we have

dḠd(c) · δc =
N−1
∑

k=1

D̄DELLd(tk−1, qk−1, tk, qk, tk+1, qk+1) · (δqk, δtk)

+ Θ̄+
Ld

(tN−1, qN−1, tN , qN ) · (δtN−1, δqN−1, δtN , δqN )

− Θ̄−
Ld

(t0, q0, t1, q1) · (δt0, δq0, δt1, δq1), (4.3.2)

where we write tk = ct(k) and qk = cq(k) and similarly for the variations.
The map D̄DELLd is called the extended discrete Euler–Lagrange map and
the one-forms Θ̄+

Ld
and Θ̄−

Ld
are the extended discrete Lagrangian one-forms.
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In coordinates these have the expressions

D̄DELLd(tk−1, qk−1, tk, qk, tk+1, qk+1) (4.3.3)

=
[

D4Ld(tk−1, qk−1, tk, qk) + D2Ld(tk, qk, tk+1, qk+1)
]

dq

+
[

D3Ld(tk−1, qk−1, tk, qk) + D1Ld(tk, qk, tk+1, qk+1)
]

dt,

Θ̄+
Ld

(tk, qk, tk+1, qk+1) (4.3.4)

= D4Ld(tk, qk, tk+1, qk+1)dqk+1 + D3Ld(tk, qk, tk+1, qk+1)dtk+1,

Θ̄−
Ld

(tk, qk, tk+1, qk+1) (4.3.5)

= −D2Ld(tk, qk, tk+1, qk+1)dqk −D1Ld(tk, qk, tk+1, qk+1)dtk.

Proof. Taking the derivative of (4.3.1a) at c in the direction δc yields

dḠd(c) · δc =

N−1
∑

k=0

[

D1Ld(c(k), c(k + 1)) · δc(k)

+ D2Ld(c(k), c(k + 1)) · δc(k + 1)
]

=

N−1
∑

k=1

[D2Ld(c(k − 1), c(k)) + D1Ld(c(k), c(k + 1))] · δc(k)

+ D2Ld(c(N − 1), c(N)) · δc(N)

+ D1Ld(c(0), c(1)) · δc(0),

where we have rearranged and grouped terms to isolate internal and bound-
ary terms, as integration by parts achieved in the continuous setting.

Now we change notations to (tk, qk) = (ct(k), cq(k)) = c(k), and similarly
for the variations, and we obtain the desired expressions. �

4.3.3. Discrete Euler–Lagrange equations

We now apply the discrete Hamilton’s principle, and seek discrete paths
c ∈ C̄d which are critical points of the discrete action. That is, we define
the discrete space of solutions C̄Ld

⊂ C̄d to be all those paths which satisfy
dḠd(c) · δc = 0 for all variations δc ∈ TcC̄d which are zero at the boundary
points 0 and N .

As in the continuous case, it is clear from (4.3.2) that c is a solution if
and only if the discrete Euler–Lagrange derivative is zero at all points other
than the endpoints 0 and N . This statement at k reads

D̄DELLd(tk−1, qk−1, tk, qk, tk+1, qk+1) = 0 (4.3.6)

and is known as the extended discrete Euler–Lagrange equations. It can be
separated into the configuration and time components to give

D4Ld(tk−1, qk−1, tk, qk) + D2Ld(tk, qk, tk+1, qk+1) = 0, (4.3.7a)

D3Ld(tk−1, qk−1, tk, qk) + D1Ld(tk, qk, tk+1, qk+1) = 0. (4.3.7b)
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Unlike the continuous case, however, paths which satisfy the first compon-
ent (4.3.7a) of the Euler–Lagrange equations do not automatically satisfy
the second component (4.3.7b) as well: that is, both components contribute
restrictions on the space of solutions, and both are necessary. This is be-
cause the extended discrete action is a function of the entire extended path,
not just of some discrete associated curve.

The interpretation of the discrete Euler–Lagrange equations and the dis-
crete Lagrangian one-forms can be aided by defining the discrete energies
to be

E+
Ld

(tk, qk, tk+1, qk+1) = −D3Ld(tk, qk, tk+1, qk+1),

E−
Ld

(tk, qk, tk+1, qk+1) = D1Ld(tk, qk, tk+1, qk+1).
(4.3.8)

With these definitions we see that the second component of the discrete
Euler–Lagrange equations (4.3.7b) is simply

E+
Ld

(tk−1, qk−1, tk, qk) = E−
Ld

(tk, qk, tk+1, qk+1), (4.3.9)

and reflects the evolution of the discrete energy.
If the discrete Lagrangian is time-invariant, so that Ld(tk + τ, qk, tk+1 +

τ, qk+1) = Ld(tk, qk, tk+1, qk+1) for all τ ∈ R, then taking derivatives with
respect to τ shows that D1Ld + D3Ld = 0, and thus

E−
Ld

(tk, qk, tk+1, qk+1) = E+
Ld

(tk, qk, tk+1, qk+1). (4.3.10)

Combining this with the time component of the Euler–Lagrange equations
(4.3.7b) written as (4.3.9) then yields

E+
Ld

(tk, qk, tk+1, qk+1) = E+
Ld

(tk−1, qk−1, tk, qk),

E−
Ld

(tk, qk, tk+1, qk+1) = E−
Ld

(tk−1, qk−1, tk, qk),

which shows that time invariance of the discrete Lagrangian leads to con-
servation of the discrete energies. This is a special case of the extended
discrete Noether’s theorem, as we will see below. If the Lagrangian is not
time-invariant, then the equivalent of equation (4.3.10) will indicate how the
discrete energies evolve.

4.3.4. Extended discrete Lagrangian evolution operator and mappings

The extended discrete Lagrangian evolution operator X̄Ld
is the second-order

discrete evolution operator defined by

D̄DELLd ◦ X̄Ld
= 0.

If this expression uniquely determines X̄Ld
then we will say that the exten-

ded discrete Lagrangian is discretely well-posed . In this case, the extended
discrete Lagrangian map F̄Ld

: Q̄×Q̄ → Q̄×Q̄ is specified by F̄Ld
= σ◦XLd

.
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For the rest of this section we will assume that we are working with
an extended discrete Lagrangian which is discretely well-posed. Note that
this is equivalent to the extended discrete Euler–Lagrange equations having
unique solutions for t2 and q2 in terms of the other variables. Later we will
investigate under what conditions Ld is in fact discretely well-posed.

Note that here, and in the material which follows, we are implicitly making
use of the restriction on the extended discrete path space that tk+1 > tk for
each k. This rules out spurious solutions which do not uniformly increase
in time.

An extended discrete path cd ∈ C̄d is a solution of the extended discrete
Euler–Lagrange equations if the points {(tk, qk)}

N
k=0 satisfy

F̄Ld
(tk−1, qk−1, tk, qk) = (tk, qk, tk+1, qk+1)

for each k = 1, . . . , N − 1. That is, the extended discrete Lagrangian map
defines a trajectory forward in time.

4.3.5. Extended discrete Lagrangian maps are symplectic

The extended discrete space of solutions C̄Ld
defined above can, by means of

the extended discrete Lagrangian map, be identified with the space of initial
conditions Q̄ × Q̄. Restricting the extended discrete action to this space

gives the restricted extended discrete action
¯̂
Gd : Q̄× Q̄ → R defined by

¯̂
Gd(t0, q0, t1, q1) = Ḡd(cd),

where cd ∈ C̄Ld
is the solution of the extended discrete Euler–Lagrange

equations satisfying c(0) = (t0, q0) and c(1) = (t1, q1). We now use (4.3.2)
to calculate

d
¯̂
Gd = (F̄N−1

Ld
)∗(Θ+

Ld
) − Θ−

Ld
,

and so taking another derivative and using the fact that d2 = 0 gives the
conservation law

(F̄N−1
Ld

)∗(ΩLd
) = ΩLd

,

where the extended discrete Lagrangian two-form ΩLd
is defined by

ΩLd
= −dΘ+

Ld
= −dΘ−

Ld
.

Taking any subinterval of 0, . . . , N and using the same argument gives the
same conservation law for any number of steps of F̄Ld

.

4.3.6. Extended discrete Noether’s theorem

Take a Lie group G with a (left or right) action ΦQ̄ on Q̄, and consider the
lift to the extended discrete state space Q̄× Q̄ defined by the product action
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ΦQ̄×Q̄
g (t0, q0, t1, q1) = (ΦQ̄

g (t0, q0),Φ
Q̄
g (t0, q0)). The corresponding infinites-

imal generator is then ξQ̄×Q̄ : Q̄× Q̄ → T (Q̄× Q̄), defined by

ξQ̄×Q̄(t0, q0, t1, q1) = (ξQ̄(t0, q0), ξQ̄(t1, q1))

and the extended discrete Lagrangian momentum maps J̄+
Ld
, J̄−

Ld
: Q̄× Q̄ →

g∗ are

J̄+
Ld

(t0, q0, t1, q1) · ξ = Θ̄+
Ld

· ξQ̄×Q̄(t0, q0, t1, q1),

J̄−
Ld

(t0, q0, t1, q1) · ξ = Θ̄−
Ld

· ξQ̄×Q̄(t0, q0, t1, q1).

Equivalent expressions for these are

J̄+
Ld

(t0, q0, t1, q1) · ξ

=
〈

D4Ld(t0, q0, t1, q1), ξ
q
Q̄
(t1, q1)

〉

+ D3Ld(t0, q0, t1, q1)ξ
t
Q̄(t1),

J̄−
Ld

(t0, q0, t1, q1) · ξ

=
〈

−D2Ld(t0, q0, t1, q1), ξ
q
Q̄
(t0, q0)

〉

−D1Ld(t0, q0, t1, q1)ξ
t
Q̄(t0).

If the lifted action on Q̄ × Q̄ acts by extended special discrete symplectic

maps, which requires (ΦQ̄×Q̄
g )∗(Θ̄+

Ld
) = Θ̄+

Ld
and (ΦQ̄×Q̄

g )∗(Θ̄−
Ld

) = Θ̄−
Ld

,
then the extended discrete Lagrangian momentum maps will be equivariant:
that is,

J̄+
Ld

◦ ΦQ̄×Q̄
g = Ad∗

g−1 ◦ J̄
+
Ld
,

J̄−
Ld

◦ ΦQ̄×Q̄
g = Ad∗

g−1 ◦ J̄
−
Ld
.

This can be proved in the same way as Theorem 1.2.2.
An extended discrete Lagrangian Ld : Q̄× Q̄ → R is said to be invariant

under the lifted group action if Ld(g · (t0, q0), g · (t1, q1)) = Ld(t0, q0, t1, q1))
for all g and all t0, q0, t1 and q1, and then G is said to be symmetry of
Ld. If a discrete Lagrangian is invariant then it is necessarily infinitesimally
invariant , which is the requirement that dLd · ξQ̄×Q̄ = 0 for all ξ ∈ g.

In the case that Ld is infinitesimally invariant, the fact that dLd = Θ̄+
Ld

−

Θ̄−
Ld

implies that the two extended discrete momentum maps are equal, and
we will denote the single extended discrete Lagrangian momentum map by
J̄Ld

: Q̄× Q̄ → g∗.
As the discrete Lagrangian plays an analogous role to the continuous ac-

tion, it is not surprising that for the extended continuous Noether’s theorem
we had to require invariance of the one-form Ldt, which gives invariance of
the action, while for the discrete version action invariance is directly implied
by invariance of the extended discrete Lagrangian itself.

If the extended discrete Lagrangian is invariant, then the lifted group
action acts by extended special discrete symplectic maps. This can be seen in
a similar way to the corresponding autonomous statement, by differentiating
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Ld◦ΦQ̄×Q̄
g (t0, q0, t1, q1) = Ld(t0, q0, t1, q1) with respect to t1 and q1 and using

the resulting identities to show (ΦQ̄×Q̄
g )∗(Θ̄+

Ld
) = Θ̄+

Ld
, and similarly for Θ̄+

Ld
.

Theorem 4.3.2. (Extended discrete Noether’s theorem) Consider
an extended discrete Lagrangian system Ld : Q̄× Q̄ → R which is invariant
under the lift of the (left or right) group action ΦQ̄ : G × Q̄ → Q̄. Then
the corresponding extended discrete Lagrangian momentum map J̄Ld

: Q̄×
Q̄ → g∗ is a conserved quantity of the extended discrete Lagrangian map
F̄Ld

: Q̄× Q̄ → Q̄× Q̄, in the sense that J̄Ld
◦ F̄Ld

= J̄Ld
.

Proof. The extended discrete Noether’s theorem can be proved in exactly
the same way as the standard discrete Noether’s theorem (Theorem 1.3.3):
that is, we compute

0 = d
¯̂
Gd(t0, q0, t1, q1) · ξQ̄×Q̄(t0, q0, t1, q1)

=
(

(F̄N−1
Ld

)∗(Θ̄+
Ld

) − Θ̄−
Ld

)

(t0, q0, t1, q1) · ξQ̄×Q̄(t0, q0, t1, q1),

which gives the desired expression, using the fact that we may take N to be
arbitrary. �

As in earlier Noether’s theorems, we have required more than is actually
necessary for the proof. In particular, the result will still hold if Ld is only
infinitesimally invariant.

Example 4.3.3. If we have a discrete Lagrangian which is autonomous,
in the sense that it is invariant with respect to the additive action of R on
the time component of Q̄, then the extended discrete Noether’s theorem
recovers the statement of discrete energy conservation.

To see this, consider the group action g · (t, q) = (t + g, q) for g ∈ R,
which has infinitesimal generator ξQ̄(t, q) = ((t, q), (ξ, 0)) for ξ ∈ g∗ ∼= R.
Using this, we compute the extended discrete Lagrangian momentum map
to be J̄Ld

= −E+
Ld

dt1, or equivalently J̄Ld
= −E−

Ld
dt0. Noether’s theorem

thus gives E+
Ld

(k, k + 1) = E+
Ld

(k − 1, k), or E−
Ld

(k, k + 1) = E−
Ld

(k − 1, k),
which are the statements of discrete energy conservation. This is directly
analogous to the continuous case, where energy conservation is also recovered
by Noether’s theorem in the case when L is autonomous. ♦

A difference from the continuous case arises because the proof of the exten-
ded discrete Noether’s theorem relied upon the fact that both components
of the extended discrete Euler–Lagrange equations (4.3.7) are satisfied at
intermediate (non-boundary) points, unlike the continuous case where only
the first component was required to be satisfied. Weakening this requirement
to only insist on (4.3.7a) being satisfied means that full extended discrete
Noether’s theorem will only be true in the case that the symmetry action
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is autonomous and time-preserving, which shows that the discrete energy
would not then be preserved.

4.3.7. Autonomous discrete Lagrangians

The previous example is also interesting because this is the case in which
one could formulate a discrete theory using a state space of Q×R×Q with
elements (q0, h, q1) consisting of two points q0 and q1 and a time-step h. In
such a theory there would be only a single discrete energy ELd

rather than
E+

Ld
and E−

Ld
. Given such a discrete Lagrangian L′

d(q0, h, q1), however, we
can also simply define an extended discrete Lagrangian by

Ld(t0, q0, t1, q1) = L′
d(q0, t1 − t0, q1)

and proceed to use the extended discrete Lagrangian theory derived in this
section. Such an Ld will automatically have the time translation symmetry,
and so the statement of infinitesimal invariance dLd · ξQ̄×Q̄ = 0 can be seen
to be just

0 = dLd(t0, q0, t1, q1) · (ξ, 0, ξ, 0)

= D1Ld(t0, q0, t1, q1) · ξ + D3Ld(t0, q0, t1, q1) · ξ

=
(

E−
Ld

(t0, q0, t1, q1) − E+
Ld

(t0, q0, t1, q1)
)

· ξ,

and so the two discrete energies in this case are equal. This is just the
single discrete energy ELd

= E±
Ld

, which would appear in a theory based on
Q× R ×Q.

This same calculation can also be carried through for the discrete one- and
two-forms and the other discrete structures, and shows that a Q × R × Q
theory would not be essentially different from that based on Q̄× Q̄.

4.4. Background: Extended Hamiltonian mechanics

As in the autonomous setting, the Hamiltonian picture of mechanics is com-
plementary to the Lagrangian, and additional insight can be gained for vari-
ational integrators if the connection is made with Hamiltonian mechanics
and, in particular, with extended Hamilton–Jacobi theory.

4.4.1. Basic definitions

Consider a configuration manifold Q, time space R and extended configura-
tion manifold Q̄ = R ×Q. Define the extended phase space to be R × T ∗Q,
that is, the usual phase space augmented with time, and consider an exten-
ded Hamiltonian H : R × T ∗Q → R.

Given an extended Hamiltonian H, we define the extended canonical
one-form Θ̄H and the extended canonical two-form or extended symplectic
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form Ω̄H to be one- and two-forms respectively on the extended phase space
R × T ∗Q given by

Θ̄H(t, q, p) = pidq
i −H(t, q, p)dt, (4.4.1)

Ω̄H(t, q, p) = −dΘ̄H = dqi ∧ dpi + dH(t, q, p) ∧ dt. (4.4.2)

If φ : R × T ∗Q → R × T ∗Q is a map from the extended phase space with
Hamiltonian H0 to the extended phase space with Hamiltonian H1, then we
say that φ is symplectic or canonical if φ pulls the extended symplectic form
back to the appropriate other extended symplectic form, so that

φ∗(Ω̄H1
) = Ω̄H0

.

4.4.2. Hamiltonian vector fields and flow maps

For an extended Hamiltonian H : R × T ∗Q we define the extended Ham-
iltonian vector field X̄H on the extended phase space R × T ∗Q to be the
unique vector field with unit time flow satisfying

iX̄H
Ω̄H = 0. (4.4.3)

Note that this uniquely defines X̄H for any H. Writing X̄H = (1, Xq, Xp) in
coordinates, we see that the above expression is

iX̄H
Ω̄H =

[

∂H

∂q
·Xq +

∂H

∂p
·Xp

]

dt +

[

−Xp −
∂H

∂q

]

dq +

[

Xq −
∂H

∂p

]

dp,

and requiring that this be zero gives the familiar extended Hamilton’s equa-
tions

Xq(t, q, p) =
∂H

∂p
(t, q, p), (4.4.4a)

Xp(t, q, p) = −
∂H

∂q
(t, q, p). (4.4.4b)

Notice that the time component of (4.4.3) does not contribute an equation,
because the other two equations automatically imply that

∂H

∂q
·Xq +

∂H

∂p
·Xp =

∂H

∂q
·

(

∂H

∂p

)

+
∂H

∂p
·

(

−
∂H

∂q

)

= 0,

which is equivalent to the fact that time variations in the Lagrangian case
do not give additional constraints beyond the Euler–Lagrange equations.

The time component of (4.4.3) is a statement about the time evolution of
the Hamiltonian. Computing

dH

dt
=

∂H

∂t
·Xt +

∂H

∂q
·Xq +

∂H

∂p
·Xp =

∂H

∂t
,

we see that the derivative of the Hamiltonian with respect to time simply
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reflects the explicit dependence of H on t. If this is zero, so that the extended
Hamiltonian is time-independent, then H is constant along the flow of X̄H .

We denote the extended flow map of the extended Hamiltonian vector field
X̄H by F̄H : R × (R × T ∗Q) → R × T ∗Q, defined as

F̄ h
H(t0, q0, p0) = F̄H(h, t0, q0, p0) = (t0 + h, q1, p1).

The flow map F̄ h
H for any fixed h is a symplectic map from R×T ∗Q to itself,

as can be readily seen by taking the time derivative to obtain

∂

∂h

∣

∣

∣

∣

h=0

(F̄ h
H)∗Ω̄H = LX̄H

Ω̄H

= diX̄H
Ω̄H + iX̄H

dΩ̄H

= 0,

where we have used Cartan’s magic formula LXα = diXα+ iXdα, and then
the facts that iX̄H

Ω̄H = 0 is the definition of the extended Hamiltonian

vector field, and that d2 = 0 implies dΩ̄H = −d2Θ̄H = 0.

4.4.3. Extended Hamiltonian Noether’s theorem

Consider a (left or right) action Φ : G × Q̄ → Q̄ of G on the extended
configuration manifold Q̄, as in Section 4.2.6. The lift of this action to the
extended phase space R × T ∗Q is denoted by ΦR×T ∗Q : G × (R × T ∗Q) →
R × T ∗Q and is defined by

〈

ΦR×T ∗Q
g (t, q, p), (t, q, q̇)

〉

=
〈

(t, q, p), (Φt
g(t),Φ

q
g(t, q), ∂qΦ

q
g(t, q) · q̇)

〉

.

This has the corresponding infinitesimal generator ξR×T ∗Q : R × T ∗Q →
T (R × T ∗Q) defined by

ξR×T ∗Q(t, q, p) =
d

dg

(

ΦR×T ∗Q
g (t, q, p)

)

· ξ.

The extended Hamiltonian momentum map J̄H : R×T ∗Q → g∗ is defined by

J̄H(t, q, p) · ξ = Θ̄H(t, q, p) · ξR×T ∗Q(t, q, p).

For each ξ ∈ g we define J̄ξ
H : R × T ∗Q → R by J̄ξ

H(t, q, p) = J̄H(t, q, p) · ξ,

which has expression J̄ξ
H = iξR×T∗Q

Θ̄H . Note that the Hamiltonian map is
also given by the expression

J̄H(t, q, p) · ξ =
〈

(t, q, p), ξq
Q̄
(t, q)

〉

−H(t, q, p)ξtQ̄(t, q),

where the two components of ξQ̄ are denoted by ξQ̄ = (ξt
Q̄
, ξq

Q̄
).

As in the case of the extended Lagrangian system, invariance of the Ham-
iltonian is not the correct requirement to ensure conservation of the mo-
mentum maps. Instead, we define a group action to be a symmetry if its
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lift acts by extended special symplectic maps, which is the requirement that

(ΦR×T ∗Q
g )∗Θ̄H = Θ̄H for all g ∈ G.
With this requirement the same proof as in Theorem 1.2.2 shows that the

extended Hamiltonian momentum map is equivariant, in the sense thatJ̄H ◦
T̄ ∗Φg = Ad∗

g−1 ◦ J̄H .

Theorem 4.4.1. (Extended Hamiltonian Noether’s theorem) Let
H : R×T ∗Q → R be an extended Hamiltonian system that is invariant under
the lift of the (left or right) action Φ : G× Q̄ → Q̄. Then the corresponding
extended Hamiltonian momentum map J̄H : R × T ∗Q → g∗ is a conserved
quantity of the flow, so that J̄H ◦ F̄ h

H = J̄H for all times h.

Proof. By assumption we have that (T̄ ∗Φg)
∗Θ̄H = Θ̄H for all g ∈ G and

hence LξR×T∗Q
Θ̄H = 0. Now, computing the derivative of J̄ξ

H in the direction

given by the extended Hamiltonian vector field X̄H gives

dJ̄ξ
H · X̄H = d(iξR×T∗Q

Θ̄H) · X̄H

= LξR×T∗Q
Θ̄H · X̄H − iξR×T∗Q

dΘ̄H · X̄H

= −iX̄H
Ω̄H · ξR×T ∗Q

= 0

using Cartan’s magic formula LXα = diXα + iXdα and (4.4.3). As F̄ h
H is

the flow map for X̄H this gives the desired result. �

Observe that in this extended case the assumption that Θ̄H is preserved
by the lifted group action plays the same role as invariance of H did in the
autonomous case, when invariance of Θ was a result of the fact that the
action was a lift.

4.4.4. Extended Legendre transform

To relate the extended Lagrangian picture developed previously to that of
extended Hamiltonian mechanics we define the extended Legendre transform
F̄L : R × TQ → R × T ∗Q to be

F̄L : (t, q, q̇) �→ (t, q, p) =

(

t, q,
∂L

∂q̇
(t, q, q̇)

)

.

If F̄L is a local isomorphism then we say that L is regular , and if is a global
isomorphism then we say that L is hyperregular .

Using the definitions, it is simple to check that the Lagrangian and Ham-
iltonian symplectic forms and momentum maps are related by

Θ̄L = (F̄L)∗Θ̄H , Ω̄L = (F̄L)∗Ω̄H , and J̄L = (F̄L)∗J̄H .
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Given a regular extended Lagrangian L, we define the associated extended
Hamiltonian by

H = EL ◦ (F̄L)−1,

which in coordinates is

H(t, q, p) = FL(t, q, q̇) · q̇ − L(t, q, q̇),

since (t, q, p) and (t, q, q̇) are related by the extended Legendre transform.
With this additional assumption on H and L we can use calculations similar
to those in Section 1.4.3 to see that the Hamiltonian and Lagrangian vector
fields and flow maps are related by

X̄L = (F̄L)∗X̄H , F̄ h
L = (F̄L)−1 ◦ F̄ h

H ◦ F̄L.

The definition of regularity of an extended Lagrangian can also be used
to give a characterization of when the Euler–Lagrange equations uniquely
define solution curves.

Theorem 4.4.2. Given an extended Lagrangian L : R × TQ → R, the
extended Lagrangian vector field X̄L, and hence the extended flow map F̄L,
is well-defined if and only if the Lagrangian is regular.

Proof. The same coordinate proof as is given for Theorem 1.4.3 also works
here. �

4.4.5. Extended generating functions

Consider two extended phase spaces with Hamiltonians H0 and H1 and ex-
tended canonical two-forms Ω̄H0

= −dΘ̄H0
and Ω̄H1

= −dΘ̄H1
respectively,

and let ϕ : R × T ∗Q → R × T ∗Q be a time-dependent transformation. Set
Γ(ϕ) ⊂ (R×T ∗Q)× (R×T ∗Q) to be the graph of ϕ. Consider the one-form
on (R × T ∗Q) × (R × T ∗Q) defined by

Θ̄H0,H1
= π∗

2Θ̄H0
− π∗

1Θ̄H1
,

where πi : (R × T ∗Q) × (R × T ∗Q) → R × T ∗Q are the projections. The
corresponding two-form is then

Ω̄H0,H1
= −dΘ̄H0,H1

= −π∗
2

¯̄ΩH0
+ π∗

1
¯̄ΩH1

.

Denoting the inclusion map by iϕ : Γ(ϕ) → (R× T ∗Q)× (R× T ∗Q), we see
that we have the identities

π1 ◦ iϕ = π1|Γ(ϕ), (4.4.5)

π2 ◦ iϕ = ϕ ◦ π1 on Γ(ϕ). (4.4.6)
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Using these relations we have

i∗ϕΩ̄H0,H1
= i∗ϕ(π∗

1Ω̄H0
− π∗

2Ω̄H1
)

= (π1 ◦ iϕ)∗Ω̄H0
− (π2 ◦ i

∗
ϕΩ̄H1

= (π1|Γ(ϕ))
∗(Ω̄H0

− ϕ∗Ω̄H1
),

where we have used (4.4.5) and (4.4.6).
This last relation shows that ϕ is an extended symplectic transformation

if and only if i∗ϕΩ̄H0,H1
= 0 or, equivalently, if and only if d(i∗ϕΘ̄H0,H1

) = 0.
By the Poincaré lemma, this last statement is equivalent to there existing
a function S̄ : Γ(ϕ) → R so that, locally, i∗ϕΘ̄H0,H1

= dS̄. Such a function

S̄ is known as the extended generating function of the extended symplectic
transformation ϕ. Note that S̄ is not unique, as it is only defined up to a
constant.

The extended generating function S̄ is specified on the graph Γ(ϕ), and
so can be expressed in any local coordinate system on Γ(ϕ).

4.4.6. Coordinate expression

We will be particularly interested in the choice (q0, q1, t0) as local coordinates
on Γ(ϕ), and so we give the coordinate expressions for the above general
extended generating function derivation for this particular case. This choice
results in extended generating functions of the so-called first kind .

Consider a function S̄ : Q×Q× R → R. Now the differential will be

dS̄ =
∂S̄

∂q0
dq0 +

∂S̄

∂q1
dq1 +

∂S̄

∂t0
dt0.

Let ϕ : R × T ∗Q → R × T ∗Q be the extended symplectic transformation
generated by S̄. In coordinates, the quantity i∗ϕΘ̄H0,H1

is

i∗ϕΘ̄H0,H1
=

(

−p0 −H1
∂t1
∂q0

)

dq0 +

(

p1 −H1
∂t1
∂q1

)

dq1 +

(

H0 −H1
∂t1
∂t0

)

dt0

and so the condition i∗ϕΘ̄H0,H1
= dS̄ reduces to the equations

∂S̄

∂q0
= −p0 −H1

∂t1
∂q0

, (4.4.7a)

∂S̄

∂q1
= p1 −H1

∂t1
∂q1

, (4.4.7b)

∂S̄

∂t0
= H0 −H1

∂t1
∂t0

, (4.4.7c)

which are an implicit definition of the transformation ϕ : (t0, q0, p0) �→
(t1, q1, p1). From the above general theory, we know that such a transforma-
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tion is automatically symplectic in an extended sense, and that all extended
symplectic transformations have such a representation.

Observe that for some choices of S̄ the above equations do not define a
single map ϕ, as was also the case for autonomous generating functions and
the extended discrete Euler–Lagrange equations. As before, we will assume
for now that S̄ is chosen so that there is a single well-defined map ϕ which
satisfies (4.4.7), and we will investigate this issue further in Sections 4.5.4
and 4.9.4.

4.5. Discrete variational mechanics: Hamiltonian viewpoint

4.5.1. Extended discrete Legendre transforms

The fact that the extended discrete state space Q̄ × Q̄ is larger than the
extended state space R × TQ is particularly important when it comes to
defining extended discrete Legendre transforms. We will see this below,
where the Legendre transform to the Hamiltonian phase space R×T ∗Q will
not be a local isomorphism, and so it will be necessary to define another
map to R × (R × T ∗Q) in order to push the extended discrete Lagrangian
map forward.

We begin by defining the extended discrete Legendre transforms F̄
±Ld :

Q̄× Q̄ → R × T ∗Q to be

F̄
+Ld(t0, q0, t1, q1) = (t1, q1, D4Ld(t0, q0, t1, q1)),

F̄
−Ld(t0, q0, t1, q1) = (t0, q0,−D2Ld(t0, q0, t1, q1)).

As Q̄×Q̄ is larger than R×T ∗Q, these maps cannot be even local isomorph-
isms. If they are both onto, however, then we say that the extended discrete
Lagrangian is regular , and if they are both globally onto then we say that
Ld is hyperregular , which will typically require that Q be a linear space.

Note that, in general, symplectic forms and momentum maps do not pull
back to their discrete counterparts. If a momentum map arises from a
vertical action, however, then we essentially reduce to the autonomous case
and it can be seen that the associated extended Hamiltonian momentum
map will indeed pull back to the extended discrete momentum maps.

4.5.2. Momentum and energy matching

Just as we earlier defined the discrete energies, we can also define the discrete
momenta to be the image of the extended discrete Legendre transforms: that
is, we set

p+
k,k+1 = p+(tk, qk, tk+1, qk+1) = D4Ld(tk, qk, tk+1, qk+1),

p−k,k+1 = p−(tk, qk, tk+1, qk+1) = −D2Ld(tk, qk, tk+1, qk+1),
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or equivalently

F̄
+Ld(tk, qk, tk+1, qk+1) = (tk+1, qk+1, p

+
k,k+1),

F̄
−Ld(tk, qk, tk+1, qk+1) = (tk, qk, p

−
k,k+1).

In other words, p+
k,k+1 is the discrete momentum at the right endpoint of the

interval [tk, tk+1], while p−k,k+1 is the discrete momentum at the left endpoint.
We also introduce the notation

E+
k,k+1 = E+

Ld
(tk, qk, tk+1, qk+1),

E−
k,k+1 = E−

Ld
(tk, qk, tk+1, qk+1).

Using these definitions, we see that the extended discrete Euler–Lagrange
equations can be written

p+
k−1,k = p−k,k+1,

E+
k−1,k = E−

k,k+1,

and thus can be interpreted as a matching of momenta and energies at each
time tk. This is a generalization of the autonomous case, where only the
discrete momenta are matched.

The definitions above also allow us to write the discrete Lagrangian one-
forms in the more compact form

Θ̄+
Ld

(k, k + 1) = p+
k,k+1dqk+1 − E+

k,k+1dtk+1,

Θ̄−
Ld

(k, k + 1) = p−k,k+1dqk − E−
k,k+1dtk,

which makes the analogy to the continuous extended Lagrangian one-form
(4.2.11) even more apparent.

Note that, unlike the continuous case, regularity of an extended discrete
Lagrangian is not sufficient to ensure that the extended discrete Euler–
Lagrange equations have unique solutions, or indeed any solutions at all.
We will investigate this issue further in Section 4.9.4.

4.5.3. Extended discrete Hamiltonian maps

The extended discrete Legendre transforms defined above clearly cannot be
used to push the extended discrete Lagrangian map F̄Ld

: Q̄× Q̄ → Q̄× Q̄
forward to the Hamiltonian phase space, as these Legendre transforms are
not injective. Another way of saying this is that we need to augment the
Hamiltonian phase space with time-step information to give a well-defined
map.

This results in the space (R × T ∗Q) × R where an element (t, q, p, h) is
interpreted as being a point (t, q, p) in phase space together with a time-
step h. Given a sequence {(tk, qk, pk, hk)}

N
k=0, we regard hk as being the

time-step tk+1 − tk.
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Now define the map F̃
−Ld : Q̄× Q̄ → (R × T ∗Q) × R by

F̃
−Ld : (t0, q0, t1, q1) �→ (t0, q0, p0, h0) = (t0, q0,−D2Ld(t0, q0, t1, q1), t1 − t0)

and define the extended discrete Hamiltonian map F̃Ld
: (R × T ∗Q) × R →

(R × T ∗Q) × R to be

F̃Ld
: (t0, q0, p0, h0) �→ (t1, q1, p1, h1),

F̃Ld
= (F̃−Ld) ◦ F̄Ld

◦ (F̃−Ld)
−1,

which is equivalent to the following commutative diagram.

(t0, q0, t1, q1)
� F̄Ld ��

�

F̃
−Ld

��

(t1, q1, t2, q2)�

F̃
−Ld

��
(t0, q0, p0, h0)

�

F̃Ld

�� (t1, q1, p1, h1)

Using this we can define the map F̃
+Ld : Q̄× Q̄ → R×T ∗Q by the following

commutative diagram.

(t0, q0, t1, q1)
� F̄Ld ��



F̃
+Ld

�
��

��
��

��
��

��
��

��

F̃
−Ld

����
��

��
��

��
��

��
��

(t1, q1, t2, q2)


F̃
+Ld

�
��

��
��

��
��

��
��

��

F̃
−Ld

����
��

��
��

��
��

��
��

(t0, q0, p0, h0)
�

F̃Ld

�� (t1, q1, p1, h1)
�

F̃Ld

�� (t2, q2, p2, h2)

Now that we have a discrete system on an extension of the Hamiltonian
phase space, it is natural to ask what structure is preserved by the evolution
map. Unlike the autonomous case, the pushforward of the extended discrete
symplectic form does not give any canonical structure on (R × T ∗Q) × R.
Of course, it does define a two-form there, which will be preserved by F̃Ld

,
and we will see below one way in which this is related to Ω̄H on R × T ∗Q.

An alternative to mapping to a point (t, q, p) ∈ R×T ∗Q and an associated
time-step h would be to map to (t, q, p, E), where E is a discrete energy.
This is reminiscent of the structure found in the continuous formulation
of multisymplectic mechanics, but such discrete systems will often fail to
behave well, as is further investigated in Section 4.9.4.

4.5.4. Extended discrete Lagrangians are extended generating functions

Although the extended discrete Hamiltonian map is not a map on the Ham-
iltonian phase space, we will see that a particular restriction of it is in fact
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generated by a restriction of the extended discrete Lagrangian, in the sense
of Section 4.4.5.

Given Ld : Q̄ × Q̄ → R, choose a fixed time-step h ∈ R and define the
restriction of the extended discrete Hamiltonian map to ϕh : R × T ∗Q →
R × T ∗Q by

ϕh : (t0, q0, p0) �→ (t1, q1, p1),

where (t1, q1, p1, h1) = F̃Ld
(t0, q0, p0, h). This provides an implicit definition

of (t0, q0, t1, q1) in terms of either (t0, q0, p0) or (t1, q1, p1). Given this, we
define the Hamiltonians Hh

0 and Hh
1 to be

Hh
0 (t0, q0, p0) = E−

Ld
(t0, q0, t1, q1),

Hh
1 (t1, q1, p1) = E+

Ld
(t0, q0, t1, q1),

and the extended generating function S̄h : Q×Q× R → R to be

S̄h(q0, q1, t0) = Ld(t0, q0, t1, q1).

With these definitions we have the following result.

Theorem 4.5.1. Take a fixed time-step h ∈ R and let the functions S̄h,
ϕh, Hh

0 and Hh
1 be defined as above. Then the map ϕh from the space

R× T ∗Q with Hamiltonian Hh
0 to the space R× T ∗Q with Hamiltonian Hh

1

is generated by the extended generating function S̄h.

Proof. Observe that the definition of ϕh implies that t1 = t0 +h. Comput-
ing the derivatives of S̄h and using the definitions above we thus obtain

∂S̄

∂q0
= D2Ld(t0, q0, t1, q1) = −p0,

∂S̄

∂q1
= D4Ld(t0, q0, t1, q1) = p1,

∂S̄

∂t0
= D1Ld(t0, q0, t1, q1) + D3Ld(t0, q0, t1, q1)

= Hh
0 (t0, q0, p0) −Hh

1 (t1, q1, p1).

However, these are simply the equations (4.4.7) which define the map gen-
erated by S̄h, and so ϕh must be this map. �

As maps generated by extended generating functions must be symplectic,
this construction shows that (ϕh)∗ΩHh

1
= ΩHh

0
. This provides a way in which

the discrete Hamiltonian map F̃Ld
can be viewed as preserving canonical

structures on R × T ∗Q.
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4.6. Correspondence between discrete and continuous

mechanics

We will now investigate the choice of extended discrete Lagrangian which
gives an exact correlation between a continuous and a discrete system, for
which we need the following result.

Theorem 4.6.1. Consider a regular extended Lagrangian L : R × TQ →
R, two points q0, q1 ∈ Q and two times t0, t1 ∈ R. If ‖q1 − q0‖ and |t1 − t0|
are sufficiently small then there exists a unique solution q : [t0, t1] → Q of
the Euler–Lagrange equations for L satisfying q(t0) = q0 and q(t1) = q1.

Proof. Essentially the same proof as that given in Marsden and Ratiu
(1999), Section 7.4, for the autonomous case holds in the extended setting
as well. �

Given a regular extended Lagrangian L : R × TQ → R, define the exact
extended discrete Lagrangian to be

LE
d (t0, q0, t1, q1) =

∫ t1

t0

L(t, q0,1(t), q̇0,1(t)) dt, (4.6.1)

where q0,1 : [t0, t1] → Q is the unique solution of the Euler–Lagrange equa-
tions satisfying q0,1(t0) = q0 and q0,1(t1) = q1.

Lemma 4.6.2. A regular extended Lagrangian L : R × TQ → R and the
corresponding exact extended discrete Lagrangian LE

d : Q̄ × Q̄ → R satisfy
the relations

F̄
+LE

d (t0, q0, t1, q1) = F̄L(t1, q0,1(t1), q̇0,1(t1)),

E+
LE
d

(t0, q0, t1, q1) = EL(t1, q0,1(t1), q̇0,1(t1)),

F̄
−LE

d (t0, q0, t1, q1) = F̄L(t0, q0,1(t0), q̇0,1(t0)),

E−
LE
d

(t0, q0, t1, q1) = EL(t0, q0,1(t0), q̇0,1(t0)),

for sufficiently close q0, q1 ∈ Q and t0, t1 ∈ R.

Proof. The calculation for the Legendre transforms is essentially the same
as in the time-independent case. For the energies, we calculate

∂LE
d

∂t0
= −L(t0, q0,1(t0), q̇0,1(t0)) +

∫ t1

t0

[

∂L

∂q
·
∂q0,1
∂t0

+
∂L

∂q̇
·
∂q̇0,1
∂t0

]

dt

= −L(t0, q0,1(t0), q̇0,1(t0)) −

∫ t1

t0

[

∂L

∂q
−

d

dt

(

∂L

∂q̇

)]

·
∂q0,1
∂t0

dt

+

[

∂L

∂q̇
(t, q0,1(t), q̇0,1(t)) ·

∂q0,1
∂t0

(t)

]t1

t0

,
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using integration by parts. However, q0,1(t) is a solution of the Euler–
Lagrange equations for L and so the middle term is zero. Now note that
we have

∂q0,1(t; t0, q0, t1, q1)

∂t0

∣

∣

∣

∣

t=t0

= q̇0,1(t0; t0, q0, t1, q1),

∂q0,1(t; t0, q0, t1, q1)

∂t0

∣

∣

∣

∣

t=t1

= 0,

and using this gives

∂LE
d

∂t0
= −L(t0, q0,1(t0), q̇0,1(t0)) +

[

∂L

∂q̇
(t, q0,1(t), q̇0,1(t)) ·

∂q0,1
∂t0

(t)

]t1

t0

= −L(t0, q0,1(t0), q̇0,1(t0)) +
∂L

∂q̇
(t0, q0,1(t0), q̇0,1(t0)) · q̇0,1(t0)

= EL(t0, q0,1(t0), q̇0,1(t0)).

The result for D4L
E
d can be established by a similar calculation, using the

fact that

∂q0,1(t; t0, q0, t1, q1)

∂t1

∣

∣

∣

∣

t=t0

= 0,

∂q0,1(t; t0, q0, t1, q1)

∂t0

∣

∣

∣

∣

t=t1

= −q̇0,1(t1; t0, q0, t1, q1). �

One interesting consequence of this lemma is that, for an exact exten-
ded discrete Lagrangian, the extended discrete Euler–Lagrange equations
are always functionally dependent. Indeed, the second equation (4.3.7b) be-
comes a consequence of the first equation (4.3.7a), just as in the continuous
case. Before we prove this, however, we give a theorem relating discrete and
continuous solution curves.

Theorem 4.6.3. Given a regular extended Lagrangian L : R × TQ → R,
let LE

d : Q̄× Q̄ → R be the associated exact extended discrete Lagrangian.
Consider a solution q : [t0, tN ] → Q of the extended Euler–Lagrange equa-
tions for L, and take any sequence {tk}

N
k=0 ⊂ [0, T ] with sufficiently small

|tk+1 − tk|. Setting qk = q(tk), we now have that {(tk, qk)}
N
k=0 is a solution

of the extended discrete Euler–Lagrange equations for LE
d .

Conversely, given any solution {(tk, qk)}
N
k=0 of the extended discrete Euler–

Lagrange equations for LE
d , define a curve q : [t0, tN ] → Q by q(t) = qk,k+1(t)

for t ∈ [tk, tk+1], where qk,k+1 : [tk, tk+1] → Q is the unique solution of the
extended Euler–Lagrange equations for L satisfying qk,k+1(tk) = qk and
qk,k+1(tk+1) = qk+1. Then q(t) is a solution of the extended Euler–Lagrange
equations for L on [t0, tN ].
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Proof. The proof of this theorem is essentially identical to that of The-
orem 1.6.4. Forming {(tk, qk)}

N
k=0 from a given solution q(t), we see that

the discrete Euler–Lagrange equations, which are just a matching of dis-
crete momenta and energies at each tk, are satisfied because the discrete
quantities are equal to the continuous ones.

In the reverse direction, the first part (4.3.7a) of the extended discrete
Euler–Lagrange equations, together with Lemma 4.6.2, implies that the first
part (4.2.9a) of the Euler–Lagrange equations is satisfied for q(t). It can now
be checked, in the same way as the proof of Theorem 1.6.4, that q(t) is C2.
As the second part of the Euler–Lagrange equations is dependent on the
first, this means that q(t) automatically satisfies the full extended Euler–
Lagrange equations for L. �

Note that in the last part of the above proof the fact that the discrete
curve also satisfied the second part (4.3.7b) of the extended discrete Euler–
Lagrange equations was not used. This allows us to prove the following.

Corollary 4.6.4. Given a regular extended Lagrangian L : R × TQ → R,
let LE

d : Q̄× Q̄ → R be the associated exact extended discrete Lagrangian.
Then the second part (4.3.7b) of the extended discrete Euler–Lagrange equa-
tions for LE

d is satisfied whenever the first part (4.3.7a) is satisfied.

Proof. Consider points (t0, q0, t1, q1, t2, q2) which satisfy the first part of the
extended discrete Euler–Lagrange equations for LE

d . Now define q0,1,2(t) :
[t0, t2] → Q by q0,1,2(t) = qk,k+1(t) for t ∈ [tk, tk+1], as in Theorem 4.6.3.
From the proof of that theorem it is clear that q(t) is a solution of the
Euler–Lagrange equations for L on [t0, t2], and thus

EL(t1, q0,1(t1), q̇0,1(t1)) = EL(t1, q0,1,2(t1), q̇0,1,2(t1))

= EL(t1, q1,2(t1), q̇1,2(t1)).

By Lemma 4.6.2, however, the left- and right-hand parts of this expression
give

E+
LE
d

(t0, q0, t1, q1) = E−
LE
d

(t1, q1, t2, q2)

which is exactly the second part of the extended discrete Euler–Lagrange
equations for LE

d . �

Indeed, as we will see in Section 4.8, the above statement is actually both
necessary and sufficient for Ld to be an exact extended discrete Lagrangian.

Note that this corollary means that the exact extended discrete Lagran-
gian is not discretely well-posed, and thus does not define an extended
discrete Lagrangian map F̄Ld

: Q̄ × Q̄ → Q̄ × Q̄. Indeed, any time-step
forward will give a valid solution. This means that the statements about
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symplecticity and momentum conservation do not hold literally in this case.
Instead, we must consider a generalized first variation interpretation of sym-
plecticity or momentum conservation, which would hold for any tangent vec-
tors to the set of solution curves. See Marsden et al. (1998) for the outline
of this idea, although it is used there for a different reason.

As we have seen above, it is exactly because any time-step gives a solution
of the extended discrete Euler–Lagrange equations for LE

d that we cannot

define F̄Ld
or F̃Ld

. For a given time-step h, however, we can define the map
ϕE,h : R × T ∗Q → R × T ∗Q by the conditions

ϕE,h ◦ F̄
−LE

d = F̄
+LE

d ,

t1 = t0 + h,

where (t1, q1, p1) = ϕE,h(t0, q0, p0). This map plays the same role as the
restriction of F̃Ld

to ϕh defined in Section 4.5.4, although ϕE,h is not the
restriction of anything. Using now the fact that F̄ h

L(t0, q0,1(0), q̇0,1(0)) =
(t1, q0,1(h), q̇0,1(h)) and combining the definition of ϕE,h with Lemma 4.6.2
shows that ϕE,h satisfies the following commutative diagram.

Q̄× Q̄

F̄
−LE

d

����
��

��
��

��
��

��
�

F̄
+LE

d

���
��

��
��

��
��

��
��

R × T ∗Q
ϕE,h

�� R × T ∗Q

R × TQ
F̄h
L

��

F̄L

��

R × TQ

F̄L

��

This proves the following theorem.

Theorem 4.6.5. Consider a regular extended Lagrangian L : R × TQ
with corresponding extended Hamiltonian H : R×T ∗Q and exact extended
discrete Lagrangian LE

d : Q̄× Q̄ → R. Then ϕE,h defined as above is exactly
the extended Hamiltonian flow map F̄ h

H .

The above construction will be useful when we consider the relationship
between exact extended discrete Lagrangians and extended Hamilton–Jacobi
theory in Section 4.8.
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4.7. Background: Extended Hamilton–Jacobi theory

4.7.1. Extended generating function for the flow

As we have already shown, the flow map F̄ h
H : (t0, q0, p0) �→ (t1, q1, p1) of an

extended Hamiltonian system is an extended symplectic map for each fixed
h. From the preceding theory, it must therefore have a representation in
terms of some extended generating function S̄h. The extended Hamilton–
Jacobi equation is a PDE that defines this generating function.

Considering that the flow map acts

F̄H : (R × T ∗Q) × R → (R × T ∗Q)

we calculate the tangent map of this to be

T F̄H((t, q, p), h)·((δt, δq, δp), δh)

= T F̄ h
H(t, q, p) · (δt, δq, δp) +

∂

∂h
F̄ h
H(t, q, p) · δh

= T F̄ h
H(t, q, p) · (δt, δq, δp) + X̄H ◦ F̄ h

H(t, q, p) · δh,

using the fact that F̄H is the flow of the vector field X̄H . This then shows
that

F̄ ∗
H(Ω̄H) = (πR×T ∗Q)∗(Ω̄H),

which follows from (4.4.3). Consider now the space (R×T ∗Q)×R×(R×T ∗Q)
with projections

π1 : (R × T ∗Q) × R × (R × T ∗Q) → (R × T ∗Q) × R,

π2 : (R × T ∗Q) × R × (R × T ∗Q) → R × T ∗Q

onto the first and second parts, respectively. Define the one-form

Θ̂ = π∗
2Θ̄H − π∗

1π
∗
R×T ∗QΘ̄H

and the corresponding two-form

Ω̂ = −dΘ̂ = π∗
1π

∗
R×T ∗QΩ̄H − π∗

2Ω̄H .

The graph of the flow map is a subset Γ(F̄H) ⊂ (R×T ∗Q)×R× (R×T ∗Q),
and we denote the corresponding inclusion map by iF̄H

: Γ(F̄H) → (R ×
T ∗Q) × R × (R × T ∗Q). Now note that

π1 ◦ iF̄H
= π1|Γ(F̄H),

π2 ◦ iF̄H
= F̄H ◦ π1 on Γ(F̄H),
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with which we calculate

(iF̄H
)∗Ω̂ = (iF̄H

)∗(π1)
∗(πR×T ∗Q)∗(Ω̄H) − (iF̄H

)∗(π2)
∗(Ω̄H)

= (πR×T ∗Q ◦ π1 ◦ iF̄H
)∗(Ω̄H) − (π2 ◦ iF̄H

)∗(Ω̄H)

= (πR×T ∗Q ◦ π1 ◦ iF̄H
)∗(Ω̄H) − (F̄H ◦ π1 ◦ iF̄H

)∗(Ω̄H)

= (πR×T ∗Q ◦ π1 ◦ iF̄H
)∗(Ω̄H) − (πR×T ∗Q ◦ π1 ◦ iF̄H

)∗(Ω̄H)

= 0.

This thus establishes that d(i∗
F̄H

Θ̂) = 0, and so there is locally a function

S̄ : Γ(F̄H) → R with i∗
F̄H

Θ̂ = dS̄.

4.7.2. Extended Hamilton–Jacobi equation

We now choose a particular set of coordinates on Γ(F̄H) and derive a co-

ordinate expression for i∗
F̄H

Θ̂ = dS̄. Taking coordinates on (R × T ∗Q) ×

R × (R × T ∗Q) of ((t0, q0, p0), h, (t1, q1, p1)), we will take (t0, q0, t1, q1) as
coordinates on Γ(F̄H). The function S̄ is thus a map S̄ : R×Q×R×Q → R

and has differential

dS̄ =
∂S̄

∂t0
dt0 +

∂S̄

∂q0
dq0 +

∂S̄

∂t1
dt1 +

∂S̄

∂q1
dq1.

In these coordinates we also have

Ω̂ = (p1dq1 −H(t1, q1, p1)dt1) − (p0dq0 −H(t0, q0, p0)dt0).

Equating coefficients, we now see that the equation i∗
F̄H

Θ̂ = dS̄ is

p0 = −
∂S̄

∂q0
(t0, q0, t1, q1), (4.7.1a)

H

(

t0, q0,−
∂S̄

∂q0
(t0, q0, t1, q1)

)

=
∂S̄

∂t0
(t0, q0, t1, q1), (4.7.1b)

p1 =
∂S̄

∂q1
(t0, q0, t1, q1), (4.7.1c)

H

(

t1, q1,
∂S̄

∂q1
(t0, q0, t1, q1)

)

= −
∂S̄

∂t1
(t0, q0, t1, q1). (4.7.1d)

Of these four equations, (4.7.1a), (4.7.1c) and (4.7.1d) can be regarded as the
generating function equations (4.4.7) for the map F̄H , while (4.7.1b) is the
equation which must be satisfied if F̄H is to be the Hamiltonian flow. Note
that the first three equations do not actually specify F̄H uniquely, as any
time reparametrization of the flow will satisfy them. To ensure uniqueness,
we must augment the above equations with the condition t1 = t0 + h.
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The last equation which S̄ must satisfy to be an extended generating
function for the flow is known as the extended Hamilton–Jacobi equation
and is given by

H

(

t0, q0,−
∂S̄

∂q0
(t0, q0, t1, q1)

)

=
∂S̄

∂t0
(t0, q0, t1, q1). (4.7.2)

As in the autonomous case, it is necessary to specify boundary conditions
for this partial differential equation.

4.7.3. Jacobi’s solution

The solution of the extended Hamilton–Jacobi equation can be written in
terms of the action associated to the Lagrangian which is the Legendre
transform of H. This is known as the extended Jacobi’s solution and is

S̄(t0, q0, t1, q1) =

∫ t1

t0

L(t, q(t), q̇(t)) dt, (4.7.3)

where q : [t0, t1] → Q is the unique solution of the extended Euler–Lagrange
equations for L satisfying q(t0) = q0 and q(t1) = q1. The proof that this is
indeed a solution is essentially identical to the proof of Lemma 4.6.2.

4.8. Discrete variational mechanics: Hamilton–Jacobi

viewpoint

For a fixed time-step h, we saw in Section 4.5.4 that the restriction of F̃Ld

to the extended phase space R × T ∗Q is generated by the restriction of the
discrete Lagrangian to the set t1 − t0 = h. We then showed that there is a
particular choice of extended discrete Lagrangian, called the exact extended
discrete Lagrangian, for a particular restricted map is exactly the extended
Hamiltonian flow map.

In the preceding section we have seen that the generating function for the
extended Hamiltonian flow map must satisfy the extended Hamilton–Jacobi
equation. It is clear that this is the case for the exact extended discrete
Lagrangian, as it is simply the standard Jacobi’s solution to the extended
Hamilton–Jacobi equation.

Note that the story is not as simple as in the autonomous case, however.
The extended discrete Lagrangian in fact defines a map F̃Ld

on the enlarged
space (R×T ∗Q)×R, and it is only upon restriction that we have a generating
function construction. This restriction essentially discards the equation for
updating the time-step.

The definition of F̃Ld
relied upon Ld being discretely well-posed, which

fails for the exact discrete Lagrangian. Nonetheless, we saw that by adding
the condition t1 = t0 + h then the restriction of F̃Ld

still makes sense even
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when Ld is not discretely well-posed, and it is this map which is exactly the
Hamiltonian flow. It is precisely this same extra equation which was also
necessary to specify the map generated by the solution to the Hamilton–
Jacobi equation.

Another way of viewing the situation is to consider a Hamiltonian system
H : R × T ∗Q → R and to attempt to find a discrete Lagrangian for which
(F̄±Ld)

∗H = E±
Ld

or, equivalently, (F̄±Ld)
∗ΘH = ΘLd

. Such a discrete La-

grangian would have the appealing property that F̃Ld
would exactly preserve

the true energy, symplectic form and momentum maps.
Considering the statement (F̄+Ld)

∗H = E+
Ld

, however, we see that this
is exactly the extended Hamilton–Jacobi PDE: that is, the only extended
discrete Lagrangian for which the pullback of the Hamiltonian is the discrete
energy is the exact extended discrete Lagrangian. The same statement also
holds with energy replaced by canonical one-forms.

Note that this does not say that the standard autonomous discrete Ham-
iltonian map will preserve H if and only if it exactly integrates the flow, as
H could be preserved even though E±

Ld
was not equal to (F̄±Ld)

∗H. Indeed,
as we saw above, this would be the case for reparametrizations of the flow
map, as discussed in Ge and Marsden (1988).

4.9. Time-dependent variational integrators

Just as we can regard autonomous discrete variational systems as integrat-
ors for a given autonomous Lagrangian system, so too can we consider an
extended discrete Lagrangian system as an integrator for an extended La-
grangian system L : R× TQ → R. For this to be the case, we need that the
discrete Lagrangian Ld : Q̄× Q̄ → R satisfies

Ld(t0, q(t0), t1, q(t1)) =

∫ t1

t0

L
(

t, q(t), q̇(t)
)

dt + O(|t1 − t0|
r+1),

where q : [t0, t1] → Q is any solution of the extended Euler–Lagrange equa-
tions for L. Here r is known as the order of the discrete Lagrangian, and
we require r ≥ 1 for Ld to be consistent .

Having chosen an extended discrete Lagrangian of some order, we can
then use the extended discrete Hamiltonian map F̃Ld

: (R × T ∗Q) × R →
(R × T ∗Q) × R as an integrator for the Hamiltonian system associated to
L. This maps from the point (tk, qk, pk) and the time-step hk to give a new
point (tk+1, qk+1, pk+1), as described in Section 4.5.3.

Although this map, based on updating time-steps, was useful for under-
standing the relationship of extended discrete variational mechanics to ex-
tended Hamilton–Jacobi theory, it turns out to be more convenient to im-
plement an equivalent method which updates points in conjunction with
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energies, rather than time-steps. To construct this, we define the maps

F̂
+Ld : (t0, q0, t1, q1) �→ (t1, q1, p1 = D4Ld, E1 = −D3Ld),

F̂
−Ld : (t0, q0, t1, q1) �→ (t0, q0, p0 = −D2Ld, E0 = D1Ld),

and define the alternative extended discrete Hamiltonian map F̂Ld
: R ×

T ∗Q× R → R × T ∗Q× R by

F̂Ld
= F̂

+Ld ◦ (F̂−Ld)
−1.

Regarding F̂Ld
as an integrator, it maps

F̂Ld
: (tk, qk, pk, Ek) �→ (tk+1, qk+1, pk+1, Ek+1)

and is defined by the relations

pk = −D2Ld(tk, qk, tk+1, qk+1), (4.9.1a)

Ek = D1Ld(tk, qk, tk+1, qk+1), (4.9.1b)

pk+1 = D4Ld(tk, qk, tk+1, qk+1), (4.9.1c)

Ek+1 = −D3Ld(tk, qk, tk+1, qk+1), (4.9.1d)

together with the requirement that tk+1 > tk, which is built in to the defin-
ition of the extended discrete path space. Computationally, the implicit
equations (4.9.1a) and (4.9.1b) must be solved simultaneously for tk+1 and
qk+1 under the restriction tk+1 > tk, and then the explicit equations (4.9.1c)
and (4.9.1d) must be evaluated to give pk+1 and Ek+1. Note that the calcu-
lations to produce a trajectory with F̃Ld

are the same as those for calculating

the same trajectory with F̂Ld
, but the presentation is clearer in this form.

As we have seen in previous sections, the method defined by (4.9.1)
preserves an extended discrete symplectic form and extended discrete mo-
mentum maps and it satisfies a discrete energy evolution equation which
exactly conserves the discrete energy if the discrete Lagrangian is autonom-
ous.

4.9.1. Initial conditions

To actually use F̂Ld
as an integrator, it is necessary to choose initial condi-

tions. Given (t0, q0, p0) ∈ R× T ∗Q, this reduces to the question of choosing
an initial energy E0 ∈ R.

While the natural choice may, at first, appear to be the Hamiltonian H
evaluated at (t0, q0, p0), this is not a feasible option. As we have seen, requir-
ing that the Hamiltonian coincides with the discrete energies is equivalent
to the extended Hamilton–Jacobi PDE, and so using this as an initial con-
dition will generally make the first step of F̂Ld

ill-defined. Even when this
equation is solvable, this approach provides no control over the size of the
initial time-step.
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Instead, a better choice is to select an initial time-step h0 ∈ R and then
to set t1 = t0 + h0 and to solve the equation

p0 = −D2Ld(t0, q0, t1, q1)

for q1. We can then evaluate E0 = E−
Ld

(t0, q0, t1, q1) to obtain the initial
condition for the discrete energy.

To see the difficulties encountered with choosing Eh = H(t0, q0, p0), con-
sider the following example.

Example 4.9.1. Taking the discrete Lagrangian Lα
d from Example 2.3.2

with α = 1 and extending it to the time-dependent case gives

Ld(t0, q0, t1, q1) = (t1 − t0)L

(

t1, q1,
q1 − q0
t1 − t0

)

,

and for the case of the autonomous Lagrangian L(t, q, q̇) = 1
2 q̇

TMq̇ − V (q)
we can calculate

F̄
−Ld(t0, q0, t1, q1) =

(

t0, q0,M

(

q1 − q0
t1 − t0

))

,

E−
Ld

(t0, q0, t1, q1) =
1

2

(

q1 − q0
t1 − t0

)T

M

(

q1 − q0
t1 − t0

)

+ V (q1),

and hence

(

(F−Ld)
∗H

)

(t0, q0, t1, q1) =
1

2

(

q1 − q0
t1 − t0

)T

M

(

q1 − q0
t1 − t0

)

+ V (q0).

If we now take E0 = H(t0, q0, p0) and calculate the first step of F̂Ld
, then

equations (4.9.1a) and (4.9.1b) are

(t0, q0, p0) = F̄
−Ld(t0, q0, t1, q1),

(

(F−Ld)
∗H

)

(t0, q0, t1, q1) = E−
Ld

(t0, q0, t1, q1),

which reduce to

q1 = q0 + (t1 − t0)M
−1p0,

V (q1) = V (q0).

For a nontrivial potential function V : Q → R these equations will not have
a solution (t1, q1), except for special choices of p0. ♦

4.9.2. Order of accuracy and local errors

As we have seen while considering the choice of initial conditions, and as we
will discuss in more detail below, existence of solutions for an extended dis-
crete Lagrangian system can be problematic for their use as integrators. For
this reason we will not discuss the order of accuracy of the extended discrete
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Hamiltonian map F̃Ld
or the variant F̂Ld

here, but instead we will consider
the relationship between the order of accuracy of the extended discrete La-
grangian and its discrete energies and extended Legendre transforms.

Theorem 4.9.2. Consider an extended Lagrangian system L : R × TQ
and a corresponding extended discrete Lagrangian system Ld : Q̄× Q̄ → R

of order r. Then the extended discrete Legendre transforms F̄
±Ld : Q̄×Q̄ →

R × T ∗Q and the discrete energies E±
Ld

: Q̄× Q̄ → R are also of order r, in
the sense that

F̄
+Ld(t0, q(t0), t1, q(t1)) = F̄L(t1, q(t1), q̇(t1)) + O(|t1 − t0|

r+1),

E+
Ld

(t0, q(t0), t1, q(t1)) = EL(t1, q(t1), q̇(t1)) + O(|t1 − t0|
r+1),

F̄
−Ld(t0, q(t0), t1, q(t1)) = F̄L(t0, q(t0), q̇(t0)) + O(|t1 − t0|

r+1),

E−
Ld

(t0, q(t0), t1, q(t1)) = EL(t0, q(t0), q̇(t0)) + O(|t1 − t0|
r+1),

for any solution q : [t0, t1] → Q of the extended Euler–Lagrange equations
for L.

Proof. This can be proved in the same way as Theorem 2.3.1, using the
results of Lemma 4.6.2. �

4.9.3. Autonomous discrete Lagrangians

If we have an autonomous discrete Lagrangian L′
d : Q × Q → R, then we

can either treat it using the autonomous theory and obtain the integrator
F̃L′

d
: T ∗Q → T ∗Q, or we can form the corresponding extended discrete

Lagrangian by

Ld(t0, q0, t1, q1) = L′
d(q0, q1, t1 − t0),

as was considered in Section 4.3.7. As we saw there, the time translation
invariance of Ld means that the two discrete energies are equal, and using
the map F̂Ld

will integrate the system while preserving the discrete energy.
Indeed, this method is exactly the symplectic-energy-momentum-conserving
integrator presented in Kane et al. (1999a), written in a slightly different
form. That paper gives some simple specific examples that show the ad-
vantage in using these types of integrators.

Although using the autonomous integrator F̃L′

d
for this system will not

exactly preserve the discrete energy or the Hamiltonian, backward error
analysis techniques can be used to show that the Hamiltonian, and hence the
discrete energies, will be nearly preserved for exponentially long times (see,
for example, Hairer (1994), Hairer and Lubich (1997) and Reich (1999a)).

For autonomous systems, it will thus generally be preferable to use a
standard variational integrator, and not to enforce exact energy conser-
vation. Even in this case, however, the theory developed above for non-
autonomous systems gives much insight into the geometric structure.
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4.9.4. Existence of solutions

The question of the existence of solutions to the extended discrete Euler–
Lagrange equations is, in general, rather subtle. There are two main prob-
lems which may arise.

First, it may be that for certain choices of initial condition (t0, q0, p0, E0),
or correspondingly (t0, q0, t1, q1), that the extended discrete Euler–Lagrange
equations simply have no solutions.

For specific choices of discrete Lagrangian it is sometimes possible to ana-
lyse this situation in more detail. For example, in Kane et al. (1999a) it
is proved that, for Lagrangians of the form L(q, q̇) = 1

2 q̇
TMq̇ − V (q) and

the discrete Lagrangian Lα
d from Example 2.3.2, then the extended discrete

Euler–Lagrange equations have unique solutions away from points where the
kinetic energy is near zero. This criterion of being away from turning points
is illustrated in that paper with numerical examples.

A particular choice of discrete Lagrangian, albeit in a different setting, is
also analysed in Lew, Marsden, Ortiz and West (2001), where the existence
of solutions to a time-adaptive variational PDE integrator is investigated.

The second problem which may arise is that the solution times tk may not
be unbounded, that is, they may converge to some finite value tk → T ∈ R.
This is similar to the issue of completeness of the differential equations in
the continuous case, where a solution may escape to infinity in finite time.

4.9.5. Examples of extended variational integrators

To actually construct an extended discrete Lagrangian given an extended
Lagrangian, most of the methods discussed in Section 2.6 can be readily
extended to the nonautonomous case. Typically the time-step h should be
replaced by tk+1 − tk and the continuous Lagrangian should be evaluated
at the appropriate interpolated times. We give here a number of examples
of this.

Example 4.9.3. (Low-order methods) Consider the discrete Lagran-
gian Lα

d from Example 2.3.2, and extend it to a nonautonomous Lagran-
gian by

L̄α
d (t0, q0, t1, q1) = (t1 − t0)L

(

(1 − α)t0 + αt1, (1 − α)q0 + αq1,
q1 − q0
t1 − t0

)

.

Similarly we can extend Lsym,α
d to

L̄sym,α
d =

1

2
L̄α
d +

1

2
L̄1−α
d .

It is straightforward to check that the order of these discrete Lagrangians is
the same as in the autonomous case, namely L̄α

d is first-order unless α = 1
2 ,

when it is second-order, and L̄sym,α
d is always second-order.



502 J. E. Marsden and M. West

This is reflected in the expression for the discrete energy E−
L̄1
d

given in

Example 4.9.1 above, which is clearly a first-order approximation to the
Hamiltonian, as implied by Theorem 4.9.2. ♦

Example 4.9.4. (Symplectic partitioned Runge–Kutta methods)
The symplectic partitioned Runge–Kutta methods discussed in Section 2.6.5
have a standard extension to nonautonomous systems, although they will
clearly not be symplectic in the normal sense on T ∗Q in that case. Taking
coefficients ci, bi, aij , c̃i, b̃i, ãij for i, j = 1, . . . , s, then the corresponding
partitioned Runge–Kutta method for a regular extended Lagrangian system
L : R × TQ → R is a map (t0, q0, p0, h) �→ (t1 = t0 + h, q1, p1) defined by

q1 = q0 + (t1 − t0)
s

∑

j=1

bjQ̇j , p1 = p0 + (t1 − t0)
s

∑

j=1

b̃jṖj , (4.9.2a)

Qi = q0 + (t1 − t0)

s
∑

j=1

aijQ̇j , Pi = p0 + (t1 − t0)

s
∑

j=1

ãijṖj , i = 1, . . . , s,

(4.9.2b)

Pi =
∂L

∂q̇
(ti, Qi, Q̇i), Ṗi =

∂L

∂q
(t̃i, Qi, Q̇i), i = 1, . . . , s,

(4.9.2c)

where ti = (1 − ci)t0 + cit1 and t̃i = (1 − c̃i)t0 + c̃it1 are the interpolated
times. As in the autonomous case, we can regard (4.9.2) as defining p0, p1,
Qi, Pi, Q̇i and Ṗi for i = 1, . . . , s as functions of (t0, q0, t1, q1). Assuming
this, we define the extended discrete Lagrangian

Ld(t0, q0, t1, q1) = (t1 − t0)
s

∑

i=1

biL
(

ti, Qi, Q̇i

)

,

and, if the coefficients satisfy the extended conditions

biãij + b̃jaji = bib̃j , i, j = 1, . . . , s, (4.9.3a)

bi = b̃i, i = 1, . . . , s, (4.9.3b)

ci = c̃i, i = 1, . . . , s, (4.9.3c)

then it is clear from the result in Section 2.6.5 that the partitioned Runge–
Kutta method is exactly the restriction ϕh of the extended discrete Hamil-
tonian map F̃Ld

defined in Section 4.5.4.

If we instead use the full map F̃Ld
or the alternative F̂Ld

then the theory
developed above shows that we will have a symplectic integrator in the
extended sense. ♦
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PART FIVE

Further topics

In this part we briefly discuss some additional topics and future directions
that are related to those covered in this review. We cite relevant references
in the literature for further information.

5.1. Discrete symmetry reduction

The theory and applications of reduction of mechanical systems with sym-
metry both from the Hamiltonian and Lagrangian perspectives have been
an active area of investigation for quite some time. For a recent review, see
Marsden, Ratiu and Scheurle (2000). It is natural to investigate the discrete
counterpart of this theory and such an investigation has begun. The discrete
analogue of the Euler–Poincaré equations and reduction theory (rigid body
and fluid-type equations on Lie algebras) lead to the DEP (discrete Euler–
Poincaré) equations: see Marsden et al. (1999a, 1999b), and Bobenko and
Suris (1999a, 1999b). The latter references also make intriguing links with
discrete integrable systems. Other intriguing links between discrete mech-
anics, rigid body systems and optimal control are given in Bloch, Crouch,
Marsden and Ratiu (1998).

The DEP context assumes that the configuration space of the system
is a Lie group. The development of a more general reduction theory for
group actions on more general configuration manifolds has begun, with the
case of abelian group actions given in Jalnapurkar, Leok, Marsden and West
(2000). The general nonabelian case as well as discrete analogues of singular
reduction are also of considerable interest.

It would also be of interest to combine these variational methods for sys-
tems with symmetry with general methods that preserve symmetry structure
to take advantage of both approaches: see Iserles, McLachlan and Zanna
(1999) and Iserles et al. (2000), and literature cited therein.

5.2. Multisymplectic integrators for PDEs

The basic extension of the methods of this paper to the context of PDEs
was given in Marsden et al. (1998), and Marsden and Shkoller (1999). These
papers lay down the variational discretization of PDEs in a multisymplectic
context. The examples in these papers were fairly simple, while more inter-
esting examples in the context of continuum mechanics are given in Marsden,
Pekarsky, Shkoller and West (2001a, 2001b).

An important point about the variational methods for multisymplectic
PDEs is that they do not require that the PDE and multisymplectic struc-
ture be discretized separately (as in Bridges and Reich (200x)). Instead,
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the discrete multisymplectic structure arises directly from the discrete vari-
ational principle, which also immediately gives a discrete multisymplectic
form formula: that is, the PDE analogue of the symplectic nature of vari-
ational integrators.

This procedure is illustrated in West (2001), where the method of Suris
is extended to construct discrete Lagrangians for product Runge–Kutta dis-
cretizations of multisymplectic PDEs. From the variational principle we
derive the discrete multisymplectic structure, which turns out to coincide
with that proposed in Reich (2000).

Lew et al. (2001) develop and apply the theory of asynchronous vari-
ational integrators (AVIs) in the context of shell dynamics. This is the PDE
analogue of integrators that use adaptive time-steps to achieve exact en-
ergy and momentum balance as well as being multisymplectic. We expect
that similar integrators can be developed for other problems in continuum
mechanics, including fluids.

5.3. Open problems

5.3.1. Reversibility

It would be interesting to make closer links with methods that have been
developed for reversible systems (see, for example, Cano and Sanz-Serna
(1997), Barth, Leimkuhler and Reich (1999), McLachlan, Quispel and Turner
(1998b) and references therein). We should keep in mind that there are
many interesting systems that are Lagrangian but not time-reversible (such
as gyroscopic systems, including particles in magnetic fields) as well as sys-
tems that are reversible but not Lagrangian. See McLachlan, Quispel and
Robidoux (1998a) for a discussion of the general classification of these sys-
tems as well as those with a first integral, volume-preserving integrators, etc.

5.3.2. Variational backward error analysis

Given a symplectic integrator F for a Hamiltonian vector field, traditional
backward error analysis finds a modified vector field X̄H which is exactly
integrated by F . It is then shown that this is in fact the Hamiltonian vector
field of a modified Hamiltonian H̄, so that X̄H = XH̄ , which is therefore
exactly preserved by F . As H and H̄ are close, this shows that F almost
preserves H for long times.

We could alternatively do such an analysis on the Lagrangian side. Given
a discrete Lagrangian that approximates the action of a given Lagrangian
system Ld ≈

∫

Ldt, we seek a modified Lagrangian whose action is exactly
equal to the discrete Lagrangian, so that Ld =

∫

L̄dt.
To do this, follow the same idea as for traditional backward error analysis

and expand L̄ = L + hL1 + h2L2 + . . . . Substituting this into Ld =
∫

L̄dt,



Discrete mechanics and variational integrators 505

expanding both sides in h, and equating terms allows us to solve for the Li.
To make this rigorous we would need to investigate the convergence of the
sum, which will undoubtedly require optimal truncation techniques.

The primary advantage of a Lagrangian backward error analysis is that
it may be able to be extended to Lagrangian PDEs, via the techniques of
variational multisymplectic integrators, and to situations where the Hamil-
tonian vector field is not defined, such as nonsmooth contact problems.

5.3.3. Discrete multisymplectic reduction

A natural extension of the discrete reduction theory for ODEs would be
its multisymplectic counterpart. Some modest progress has been made in
this direction, for instance in Castrillon Lopez, Ratiu and Shkoller (2000),
but much remains to be done. The examples of Maxwell’s equations (where
reduction theory is understood from the infinite-dimensional function space
perspective, as in Marsden and Weinstein (1982)) and fluids are challen-
ging, but progress seems likely, both with the theory and, eventually, the
associated numerics.

5.3.4. Splitting methods

If L =
∑

Li, what can be said about constructing a discrete Lagrangian
for L given discrete Lagrangians Li

d for the Li? The answer to such a
question would be an interesting analogue of the corresponding question for
Hamiltonian systems, as in, for example, McLachlan and Scovel (1996) and
references therein. What makes the Hamiltonian case in a sense easier is
that the equations are linear in the Hamiltonian, whereas this is not the case
with the Euler–Lagrange equations (when written in the form ẋ = f(x)). On
the other hand, Hamilton’s variational principle is linear in the Lagrangian,
so we should be able to exploit that structure.

5.3.5. Evolution of conserved quantities for forced systems

When forcing or dissipation is added to a Lagrangian or Hamiltonian sys-
tem, then the symplectic form, momentum maps and energy are no longer
preserved by the flow. It is often of importance in applications, however, to
be able to correctly simulate the amount by which these various quantities
change over time.

The variational framework for discrete systems with forcing given in Sec-
tion 3.2 offers a way in which this evolution can be studied, both for the
discrete system and for the true Lagrangian system. Numerical results in
Kane et al. (2000) for simple systems indicate that, for weakly damped sys-
tems, correctly estimating energy and momentum decay requires the use of
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conservative integrators. It may be possible to make these statements rig-
orous using the ideas of variational backward error analysis and variational
integrators with forcing.

5.3.6. Nonsmooth mechanics

Although we have concentrated on mechanical systems which follow smooth
trajectories, there are many physical situations which demand nonsmooth
models, such as collision and fragmentation problems. In such cases it can
be very profitable to directly use nonsmooth techniques, as described in
Kane et al. (1999b), rather than try to take smooth approximations.

When dealing with truly nonsmooth mechanics, many of the conventional
definitions and derivations no longer apply, relying as they do on standard
calculus. The variational approach, and in particular discrete variational
mechanics, can be extended to nonsmooth situations with little difficulty,
however, and provides a useful tool for the analysis of nonsmooth systems
and numerical integrators for them (see Kane, Ortiz and Marsden (1998)
and Fetecau et al. (2001)).

5.3.7. Systems with nonholonomic constraints

A nonholonomic constraint is, loosely speaking, a constraint on both the
position and velocity variables. This can be defined by a constraint function
φ : TQ → R, and we seek trajectories q(t) so that φ(q(t), q̇(t)) = 0 for all
t. The variational principle which gives the correct equations of motion in
this case is the Lagrange–d’Alembert principle used in Section 3.1 to add
forcing (Bloch, Krishnaprasad, Marsden and Murray 1996a).

We could extend the discrete variational mechanics to systems with non-
holonomic constraints by using the same discrete Lagrange–d’Alembert prin-
ciple as in Section 3.2. This would yield a constrained discrete Hamiltonian
map which would approximate the continuous constrained system, and pre-
serve the nonholonomic constraints.

As nonholonomic systems do not, in general, preserve the standard sym-
plectic structure, we would not expect the discrete system to preserve the dis-
crete symplectic structure. It would be interesting, however, to see whether
the evolution was qualitatively correct, as discussed above for the energy de-
cay of dissipative systems. See McLachlan and Perlmutter (200x) for steps
in this direction.

5.3.8. Other Galerkin methods

In Section 2.6.6 we considered variational integrators derived by taking poly-
nomial approximations to the trajectory segments, and we saw that this is
equivalent to Galerkin projection onto the space of polynomials.
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While polynomials are a good choice for general smooth mechanical sys-
tems, there are many problems for which some other choice of curves may be
more appropriate. For example, in systems with highly oscillatory compon-
ents, variational integrators based on sinusoidal trajectory approximations
may have superior accuracy or stability properties.
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Poincaré equations and double bracket dissipation’, Comm. Math. Phys. 175,
1–42.

A. M. Bloch, P. Crouch, J. E. Marsden and T. S. Ratiu (1998), ‘Discrete rigid body
dynamics and optimal control’, Proc. CDC 37, 2249–2254. Longer manuscript
in preparation.

A. I. Bobenko and Y. B. Suris (1999a), ‘Discrete Lagrangian reduction, discrete
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